Page 329 - Mechanics Analysis Composite Materials
P. 329

314                 Mechanics and analysis of composite materials
             0  for the external skin:

                 A\:)  = q cos44, +  sin44c+2(J$Y2  + 2q,)sin2 4, cos24,  = 99.05 GPa,
                 Ag) =  sin44, +  cos44c + 2(qv:,  + 2q2)sin24, cos24c = 13.39 GPa,
                 A$)  = @JC,  + [g+e- 2(qvT2+2q2)]sin'  +c  cos24c = 13.96 GPa  .

             Using Eqs. (7.18)  we  find the thermal coefficients of the layers (the temperature is
             uniformly distributed through the laminate thickness):

                 (AT,),  = (AT2),  = EfafAT= 1715 x   AT GPa/"C,
                                              =
                 (AT,),  =    = E-i(l + v~-~)c~,LAT32.08 x  lop6AT  GPa/"C,
                            6r
                 (AT,),  = 2Er-gr  cos2&AT = 4.46  x 10-'AT  GPa/"C,
                            a,
                            6
                 (AT'),  = 2Er'ar   sin'  &AT  = 1.06 x   AT  GPa/"C,
                            ar
                 (AT,),  = [q(aC +~~~a~)cos~~+l?!j(a~+v~,a~)sin~~]AT
                       = 132.43 x  lo-'  AT GPa/"C,
                 (AT2)4  = [q(aC + vF2a3sin24+q(aC,+ V;,IX:)  cos'  4]AT
                       = 317.61 x  10-6AT GPa/"C  .
             Because the layers are orthotropic, AT,  = 0 for all of them. Specifyingcoordinates of
             the layers (see Fig. 5.10), i.e.
                 to = 0,  tl  = 0.02,   t2 = 1.02,   t3  = 10.02,  t4  = 13.52 (mm)

             and applying Eq. (7.27)  we calculate parameters .I:;  for the laminate

                 J!?  = (AT,),(tI -to)  + (AT,),(t2  - tl) + (AT,),(t3  - t2)
                       + (,4TI),(t4  - t3) = 570 x  lop6AT GPa mm/OC,
                 .I;:)= 1190 x  IO-'  AT  GPa mm/OC,
                  (1)  -  1      -6)+                             + (ATl)4(f2 -ti)]
                 Jll   -2 [(ATl)I(t:           -$1  + (ATL)3(':   -
                     = 5690 x  lo-'  AT GPa mm2/OC,
                 .I;;)= 13150 x  10-'AT  GPa mm'/"C  .

             To determine     we need to specify the reference surface of the laminate. Assume
             that  this surface coincides with  the middle surface, i.e., that  e = h/2 = 6.76 mm.
             Then, Eqs. (7.25)  yield


                 N:  =J{p' = 570 x    AT GPa mm/'C,
                 N&  =J;:) = 1190 x    AT GPa mrn/OC,
   324   325   326   327   328   329   330   331   332   333   334