Page 150 - Mechanics of Asphalt Microstructure and Micromechanics
P. 150

142   Ch a p t e r  Fiv e


                 The corresponding stress and strain fields:
                                                         d
                                                 ⎧ ⎪ L :( ε +  ε ( )) in M in  M
                                                      o
                                                           x
                             σ() =  : L  ε ( () −  ε ()) = ⎨                     (5-76)
                                            *
                               x
                                       x
                                             x
                                                        ε
                                                         d
                                                               *
                                                      o
                                                 ⎩ ⎪ L :( ε + ε x() − ε x()) in Ω
                 Integral operator:
                                            ε x() ≡ S x; ε )                     (5-77)
                                             d
                                                       *
                                                   (
                                             ij   ij
                 Similarly, the concept of eigenstress can be introduced:
                                                  ⎧0 in  M
                                             *
                                           σ () = ⎨  *                           (5-78)
                                              x
                                                  ⎩ ⎪ σ in Ω
                 So that elasticity tensor is uniform everywhere, including Ω, so that the strains and
              stress can be represented in the following equations.
                                            ε() =  ε +  ε ()
                                                  o
                                                     d
                                                       x
                                             x
                                                         d
                                                 ⎧ ⎪ L  :( ε +  ε ( ))  in  M
                                                     o
                                                          x
                              σ() =  L  ε : () + σ () = ⎨                        (5-79)
                                            *
                                       x
                                x
                                             x
                                                              σ
                                                     o
                                                               *
                                                         d
                                                          x
                                                 ⎩ ⎪ L  :( ε + ε ( )) +σ ()x in Ω
                                                                  −
                                                               −
                                                N
                                                            N
                                 ε ij =  1  V ∫  ε dV =  1 ∑ ∫  ε dV =  ∑ c  ε = ε  (5-80)
                                    V    ij   V     Ω i  ij   i  i
                                                i=0        i=0
                 Where c i  is the volume fraction of the ith heterogeineity and c 0  is the volume fraction
              of the matrix. Strain concentration tensor is so defined that (Qu and Ckerkaoui, 2006):
                                               ε =  A  ε                         (5-81)
                                                i  i
                 –
                 e is the average strain for the entire composite material. Equation 5-80 can be further
              written in the following format:
                                                        N
                                              N
                                                     −
                                                  −
                                        −
                                           −
                                           ε
                                      c ε =− ∑  c ε =− ∑ c A ε −                 (5-82)
                                                     ε
                                       0  0      i  i     i  i
                                                        =
                                              =
                                              i 1      i 1
                 For stresses, the following similar representations can be used:
                                                            −
                                                     −
                                                        N
                                      σ =  1  V ∫  σ dV = σ = ∑ c  σ             (5-83)
                                        ij  V   ij      i=0  i  i
                                             −    −
                                            σ =  L  ε
                                              i  i  i i (  0 , N)
                 Making use of Equation 5-82:
                                          −      −  N    −
                                                      c L
                                          σ = cL  ε +  ∑ i i ε i                 (5-84)
                                                 0
                                              00
                                                    = i 1
                                        −      N           −
                                       σ = [L 0 +  ∑ i ( c L i  − L 0 )A i  ε ]  (5-85)
                                               = i 1
   145   146   147   148   149   150   151   152   153   154   155