Page 153 - Mechanics of Asphalt Microstructure and Micromechanics
P. 153

Mixture  T heor y and Micromechanics  Applications   145


               Method        L r                        e r
               Eshelby method  L 0  (matrix modulus)    e o  Prescribed uniform strain in matrix
                                                         –
               Mori-Tanaka   L 0  (matrix modulus)      e o  Average strain in matrix
                             –                           –
               Self-consistent  L (effective composite modulus)  e  Average strain of the composite
              TABLE 5.1  Reference conditions of the three methods.




              5.3.5 Self-Consistent Method
              For the Self-consistent method (Qu and Ckerkaoui, 2006):
                                               −
                                                    ˆ = ε
                                           L =  L and ε 0                       (5-106)
                                           ˆ
                                            0
                                        ε = ε + ε = ε +  ε S  *  =  T ε         (5-107)
                                               pt
                                         i     i       i  i
                                                  −1
                                                   (
                                         T = [ I =  S L L −  L)] −1             (5-108)
                                          i
                                                 i
                                                     i
                                        σ =  L ε =  LT ε =  LT M σ              (5-109)
                                         i  i i  i i   i i
                                         A =  T ,and  B =  LT M                 (5-110)
                                          i   i     i  i i
                                                N
                                         L = L + ∑ c L −  L T                   (5-111)
                                                   (
                                                         )
                                             0     i  i  0  i
                                                i=1
                                      −   −   N             −
                                      M =  L + ∑  c M −  M LT L −1              (5-112)
                                           −1
                                                        )
                                                 (
                                              i=1  i  0  i  i i
                 ML =  I
                 For spherical particles, there are the following predictions:
                                                 cK K −  K )
                                                   (
                                        K =  K +  1  1   0                      (5-113)
                                             0  K + 3 (γ  K −  K)
                                                       1
                                                  μμ −
                                                 c (   μ )
                                         μ =  μ +  1  1  0                      (5-114)
                                                    δ μ −
                                             0  μ + 2 (  1  μ)
              5.3.6 Differential Schemes
              The differential scheme ( Qu and Ckerkaoui, 2006) follows the philosophy of adding the
              inclusions into the matrix with each time following the dilute solution but updating the
              matrix.
                                                ΔΩ
                            Lc +Δ c ) = Lc ) +    1     L (  1  −  Lc )) :  A L(())c 1  (5-115)
                                                                   (
                                       (
                                                            (
                             (
                              1
                                                              1
                                                                  1
                                        1
                                   1
                                            Ω  0  + Ω  1  + ΔΩ 1
                               Lc +Δ c ) −  Lc )  1
                                (
                                          (
                                 1    1    1  =      L (  −  L c )) :  A L c ))  (5-116)
                                                          (
                                                                (
                                                                  (
                                     c Δ       (1−  c )  1  1  1   1 1
                                      1            1
                                   dL c()   1
                                                             (
                                                     (
                                       1  =     L (  1  −  L c )) :  A L c ))   (5-117)
                                                           (
                                                               1
                                                      1
                                                           1
                                    dc 1  (1−  c )
                                              1
   148   149   150   151   152   153   154   155   156   157   158