Page 157 - Mechanics of Asphalt Microstructure and Micromechanics
P. 157

Mixture  T heor y and Micromechanics  Applications   149



                                        I ( ⎡  T)⎤ = U −  1  H T ⎡ ⎤            (5-142)
                                                         ˆ
                                                 h
                                            ˆ
                                         h ⎣
                                                        ⎣ ⎦
                                             ⎦
                                                    2 V
                                             {
                                          min I ⎡ T⎤  1  L εε
                                               h ⎣ ⎦} =
                                                 ˆ
                                                     2
                                             ˆ ⎡
                              c ˆ ⎡
                                                          ˆ
                                                                  ˆ
                                                       η
                                                                η
                             I T ⎤ = U −  1  H T ⎤ −  1  ∫  L ⎡ ⎤ M L ⎡ ⎤ dv    (5-143)
                                                              p h
                                                       h
                                     h
                                                                  T
                                                          T
                                                                 ⎣ ⎣ ⎦
                               ⎣ ⎦
                                                         ⎣ ⎦
                                            ⎣ ⎦
                                        2 V      2 V  V
                 The famous Hashin-Shtrikman Bounds are then represented as the following:
                                       ⎡  N         ⎤  −1  N
                                                           +
                                 L =  L + ⎢∑ cI L P) −1 ⎥ ∑ cI L P) L r         (5-144)
                                             +
                                                                −1 p
                                                p
                                                              p
                                    h
                                           (
                                                         (
                                           r
                                                              r
                                                         r
                                                r
                                        r ⎣ =0      ⎦  r r=0
                 For spherical particles, the bounds are:
                                               c K −
                                  K 3(  K + 4μ  )  + (  K )[ 4μ  − 3( K −  K )]
                              K ≤  0   0   0   1  1   0   0    1   0            (5-145)
                                                      (
                                          3 K + 4μ −  3cK  − K )
                                            0    0 0  1  1  0
                                                                 μ
                              2
                                                                   K
                            5 μ 3 ( K  + 4 μ + (c  μ −  μ )[ 5 μ 3 ( K  + 4 μ − 6 (K +  2μ )]
                                                             )
                                       )
                        μ ≤   0   0   0   1  1  0   0   0    0    1  0   0      (5-146)
                                                    (
                                    5μ ( 3 K +  4μ ) −  6 c K +  2μ )( μ  − μ )
                                      0   0    0   1  0    0  1  0
              5.3.10 Hirsch Model
              The Hirsch model is based on the rule mixtures.
                 In parallel:
                                            E =  v E +  v E                     (5-147)
                                             c  11   2  2
                 In series:
                                         1/E =  v  /E +  v  /E                  (5-148)
                                            c   1  1   2  2
                 The Hirsch model combines parallel and series arrangement (Figure 5.4), and as-
              sumes the relative proportions of Phase 1 and 2 are the same in the series.
                           1/E =  v  /E +  v  /E +  (v +  v  ) /(v E + + v E ) ) 2  (5-149)
                                                        2
                               c   1s  1  2s  2   1p  2p    1p  2  2p  2
                 If the proportion between the parallel and the serial components is variable, it will
              result in the following formulation:
                                   1       ⎛  v 1  v ⎞  ⎛  1    ⎞
                                        −
                                                 2
                                     = ( 1 x) ⎜  +  ⎟  +  x ⎜   ⎟               (5-150)
                                   E       ⎝ E  E 2 ⎠  ⎝ vE +  v E 2 ⎠
                                    c         1         1  1  2
                                                                 V 1
                                             V 1
                      V 1  V 2                                   V 2
                                             V 2
                                                              V 1  V 2
                           (a) Parallel phases  (b) Series phases   (c) Hirsch model
              FIGURE 5.4  Schematic representation of composite models for parallel, series, and Hirsch
              (combination) arrangement of phases (Christensen et al., 2003).
   152   153   154   155   156   157   158   159   160   161   162