Page 156 - Mechanics of Asphalt Microstructure and Micromechanics
P. 156

148   Ch a p t e r  Fiv e












                                                    a

                                                    b



                               a                             a
                               b                             b

                          Composite                    Homogeneous

              FIGURE 5.3  Composite-sphere model (Qu and Ckerkaoui, 2006).


              5.3.9  Lower and Upper Bounds (Qu and Ckerkaoui, 2006)
              The Minimum Potential Energy theorem and Minimum Complementary Energy theo-
              rem are used to predict the bounds of the effective moduli.
                                    Π[] =  1  V ∫  L u u dv −  S ∫  p u ds      (5-136)
                                                            0
                                      u
                                       i  2    ijkl  , k l i j ,  σ  i  i
                                   Π [σ ] =  1  V ∫  M σ σ dv −  Su ∫  u σ  n ds  (5-137)
                                                            0
                                    c  ij  2   ijkl  kl  ij  i  ij  j
                 Where V is the total volume and S u  is the portion of the boundary of V where dis-
              placement u i  is prescribed.
                        0
                 The Voigt Upper Bounder and Reuss Lower Bound can be represented as follows:
                                          ˆ −
                                        2εσ σ ˆ M  R σ ˆ ≤  2U  ≤  ε 'L  ε      (5-138)

                                               R     V
                                             L ≤  L ≤  L
                                                                                (5-139)
                 For spherical particles, it results in the following bounds:
                                       KK
                                        0  1    ≤  K ≤  K +  c K −(  K )
                                   K −  c K −(  K )   0  1  1   0               (5-140)
                                    1  1  1   0
                                       μμ
                                         0  1   ≤ μ ≤  μ + c ( μ −  μ )         (5-141)
                                   μ − c ( μ −  μ )   0  1  1  0
                                              0
                                        1
                                     1
                                          1
                 The Hashin-Shtrikman Variational Principle states that when L  is negative semi-
                                                                      p
              definite, among all the symmetric second-order tensors, the true solution to the stress
              polarization tensor t ˆ renders the following minimum:
   151   152   153   154   155   156   157   158   159   160   161