Page 155 - Mechanics of Asphalt Microstructure and Micromechanics
P. 155

Mixture  T heor y and Micromechanics  Applications   147


                 The Eshelby method yields:
                                     c 3(  K + 4μ  )    c 5 μ  3 K + 4μ
                             K =  K +  1  0   0  ,  μ = μ  +  1  0  0  0      (5-126a, b)
                                                                2
                                  0      3           0   6  K + 2μ 0
                                                             0
                 The Mori-Tanaka method gives:
                                     c 3(  K + 4μ  )    c 5 μ  3 K + 4μ
                             K =  K +  1  0   0  , μ = μ  +  1  0  0  0       (5-127a, b)
                                                                   −
                                                                     1
                                  0    31 (  −  c )  0  6 K +  2μ )( 1 c )
                                                                0
                                                           0
                                            1
                 And the Self-consistent method yields:
                                       c 3(  K + )μ     c 5 μ  3 K + 4μ
                               K =  K +  1     ,  μ = μ  +  1                 (5-128a, b)
                                    0     3         0    6  K + 2μ)
                 These methods predict complex patterns and may not be correct.
              Void inclusions
              The Elshelby method yields:
                                   cK 3(  K + 4μ )       c 5 μ  3 K + 4μ
                            K =  K −  1  0  0  0  ,  μ = μ  −  1  0  0  0     (5-129a, b)
                                 0      4μ            0     9K + 8μ
                                          0                  K  0  0
                 The Mori-Tanaka method gives:
                                                       c
                        cK 3(  K + 4μ  )              5c μ  3 K + 4μ
              K =  K −   1  0  0   0    ,  μ = μ  −     1  0  0    0          (5-130a, b)
                   0  K + 4μ                 0     K +  4μ  − 6 1−  K + 2μ
                                   c K
                     3       − 3 1(  − )        53           (  c )(
                        0   0       1  0            0    0       1  0    0
                 The Self-consistent method gives:
                                      cK 3(  K + 4 )μ     c 5 μ  3 (  K + 4 ) μ
                               K = K −  1  0     , μ = μ  −  1  0             (5-131a, b)
                                   0      4μ           0    9 K + 8μ
              5.3.8  The Composite Sphere Method (Qu and Ckerkaoui, 2006)
              The general philosophy of the Composite Sphere method is illustrated in Figure 5.3.
                 The two-phase, three-phase, and four-phase model predictions are presented re-
              spectively as follows.
                                               cK −  K )( 3 K + 4μ )
                                                (
                                 K =  K =  K +  1  1  0   0    0              (5-132a, b)
                                                              −
                                      r   0  3 K + 4μ 0  + 1(  −  c )( K − K )
                                                                 0
                                                             1
                                                          1
                                               0
                                               cK −  K )( 3 K + 4μ  )
                                                (
                                 K =  K =  K +  1  1  0   0    0              (5-133a, b)
                                     r   0  3 K + 4μ  + 3 1(  −  c )( K − K )
                                              0    0       1  1 1  0
                                                            3
                                                               3
                                          ( K −  K )( 3 K + 4μ  )( b / )
                                                              c
                                 K = K +    e   0    0   0                    (5-134a, b)
                                                                 3
                                                                c
                                      0  3 K + 4μ 0  + 3( K −  K ))(1− b  3 / )
                                                         0
                                                     e
                                           0
                 In the case of a multicoated inclusion problem, the prediction is as follows:
                                             3
                                      ( R 3  / R )( K  −  K )(3 K + 4μ  )
                            K =  K +    n−1  n   n−1  n   n    n   ,  n ≥  2  (5-135a, b)
                              n   n  3 K + 4μ  + 331( − R  3  /R  3 )(K  − K  )
                                       n    n      n − 1  n  n − 1  n
   150   151   152   153   154   155   156   157   158   159   160