Page 152 - Mechanics of Asphalt Microstructure and Micromechanics
P. 152

144   Ch a p t e r  Fiv e


              5.3.3  Eshelby Dilute Solution
              Therefore the Eshelby method (Qu and Ckerkaoui, 2006) (see Figure 5.2) will have:
                                           ˆ
                                          L =  L and ε 0  0                      (5-91)
                                                    ˆ = ε
                                           0   0
                                              ˆ ˆ
                                                   ˆ
                                     ε =  [( L −  L S +  L ]( L −  L  ε ) ˆ  0   (5-92)
                                                     −1
                                      *
                                               )
                                      r    r  0  r  0   r   0
                                         T =  [I S L  (L −  L ˆ  )] −1           (5-93)
                                              +
                                         ˆ
                                                ˆ ˆ −1
                                          r     r  0  r  0
                                 N
                                               0 ∑
                          L =  L + ∑  c L −  L T =  L +  N  c L −  L )[ I S M L −  I)] −1  (5-94 )
                                                             +
                                          )
                                    (
                                                     (
                                                                (
                              0    r  r  0  r        r  r  0    r  0 r r
                                r=1               r=1

                                      −        N
                                      M =  M + ∑ c M −(  L LT M                  (5-95)
                                                        )
                                            0    i  i  0  i i  0
                                              i=1
                 It should be noted that:
                      I
                 ML ≠ .
                 For spherical inclusions, the formulations are as follows:
                                             cK −  K )( 3 K + 4μ  )
                                              (
                                     K =  K +  1  1  0  0    0                   (5-96)
                                          0       3 K + 4μ
                                                    1    0
                                                (
                                           5c  μμ −  μ )( 3K  + 4 μ )
                                  μ =  μ +   1  0  1  0  0    0                  (5-97)
                                      0  3K ( 3 μ + 2 μ + 4)  μ (2μ +  3μ )
                                                          2
                                           0   0   1     0  0    1
              5.3.4 Mori-Tanaka Method
              The Mori-Tanaka Method (Qu and Ckerkaoui, 2006):
                                           ˆ
                                                    ˆ = ε
                                          L = L and ε 0                          (5-98)
                                           0   0         0
                                                ˆ
                                               S =  S
                                                r   r                            (5-99)
                                                N
                                         L =  L + ∑ c L −  L A                  (5-100)
                                                   (
                                                         )
                                             0    i  i  0  i
                                                i=1
                                             N
                                               ii i ⎢∑
                                         L = ∑ c LT  ⎡  N  c T  ⎤ −1            (5-101)
                                                      k k ⎥
                                            r=0     k ⎣ =0  ⎦
                                                                   +
                                         (
                                         )
                          L = ( c L T +  c L T c T +  c T ) −1  = ( c L +  c L T ))(cI c T  ) − 1
                               0 0 0  1 11  0 0  11    00   1 1 1  0  1 1       (5-102)
                                         −   N   ⎡  N    ⎤ −1
                                               ii ⎢∑
                                         M = ∑ c T   c L T                      (5-103)
                                                       k k ⎥
                                                     k
                                             i=0  ⎣  k=0  ⎦
                 ML =  I
                 For spherical particles the predictions are:
                                             cK −  K )( 3 K + 4μ )
                                              (
                                   K =  K +  1  1   0   0    0                  (5-104)
                                       0  3 K + 4μ  + 3 1(  −  c )( K −  K )
                                            0    0       1  1   0 0
                                           5c  μμ −  μ )( 3K  + 4 μ )
                                                (
                             μ =  μ +        1  0  1  0  0    0                 (5-105)
                                 0  5 μ  3K  + 4 μ  +6 1(  − c )(μ −  μ  )( K +  2μ  )
                                                      c
                                      0   0    0       1  1   0  0    0
   147   148   149   150   151   152   153   154   155   156   157