Page 398 - Mechanics of Asphalt Microstructure and Micromechanics
P. 398
390 Ch a p t e r E l ev e n
11.8 Compaction Simulations in Other Fields
Compaction is not a problem that is unique to asphalt concrete. It is also a problem
studied in soil, granular materials, and cement concrete. While these materials are sig-
nificantly different, the compaction process may demonstrate similarities, for example,
the log-scale law (e-logp, e-logN) relationships. At microscopic scales, these materials
(granular soil, asphalt concrete, and cement concrete) have a similar aggregate (particle)
skeleton with different binding media. Collaboration research among different disci-
plines is beneficial.
References
ABAQUS (1995). User’s Manual. Hibbitt, Karlsson & Sorensen, Inc.,Pawtucket, R.I.
Anderegg, R. (2000). ACE Ammann compaction expert - automatic control of the compaction.
Workshop on Compaction of Soils and Granular Materials, Modeling of Compacted Materials,
Compaction Management and Continuous Control, International Society of Soil Mechanics and
Geotechnical Engineering (European Technical Committee). pp.229–236, Paris.
Arand, W. (1985). Compaction of classifying characteristics for asphalt mixtures. Procedings of
Third Eurobitume symposium. The Hague, pp.11–13.
Arand, W. (1987). Arbeitsanlagen fur die bestimmung de verdichtbarkeit von walzasphalt mit
hilfe des marshallverfahrens, (Operational instructions for deduction of the compactibil-
ity of asphalt by means of the Marshall compactor). Forschungsgeselschaft fur Strassen und
verkehrswesen.
Briaud, J.L. and Seo, J. (2003). Intelligent compaction: overview and research needs, Texas A&M
University.
Buttlar, W.G. and You, Z. (2001) Discrete element modeling of asphalt concrete: a micro-fabric
approach. Journal of the Transportation Board, National Research Council, Washington, D.C.,
No. 1757, pp.111–118.
Buttlar, W. G. and Dave, E. V. (2005) A micromechanics-based approach for determining pres-
ence and amount of recycled asphalt pavement material in asphalt concrete. Long Beach, CA,
United States: Association of Asphalt Paving Technologist, pp.829–883.
Christensen, D. W., Pellien, T. and Bonaquist, R. F. (2003). Hirsch models for estimating the
modulus of asphalt concrete. Association of Asphalt Paving Technologist, Vol. 72, pp.97–121.
Einstein, A. (1911). Eine neue Bestimmung der Molekuldimensionen, Vol.34(3), pp.591–592.
Fu Y. R. (2005). Experimental quantification and dem simulation of micro-macro behavior of
granular materials using X-ray tomography imaging. Ph.D. Dissertation, Louisiana State
University.
Fu, Y.R., Wang L.B. and Tumay, M. (2007). Quantification and simulation of particle kinematics
and local strains in granular materials using x-ray tomography imaging and discrete ele-
ment method. Journal of Engineering Mechanics, Vol.134, No.2, pp.143–154.
Guler, M., Bosscher, P. J. and Plesha, M. E. (2002). A porous elastoplastic compaction model for
asphalt mixtures with parameter estimation algorithm. 15th ASCE Engineering Mechanics
Conference. June 2–5, Columbia University, New York, NY. pp.126–143.
Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth: part i
- yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and
Technology, Vol. 99, pp.2–15.
Hertz, H. (1895). Über die berührung fester elastischer körper: gesammelte werke. Bd. 1. Leipzig.
Huerne, H.T. (2004). Compaction of asphalt road pavements using finite elements and critical
state theory. Ph.D. dissertation, University of Twente, Netherlands.

