Page 399 - Mechanics of Asphalt Microstructure and Micromechanics
P. 399
Simulation of Asphalt Compaction 391
Itasca (2003). 3 dimensional distinct element code manual, Itasca Consulting Group, Inc.
Kezdi, A., 1969. Handbuch der bodenmechanik (Handbook for soil mechanics). Verlag für Bauwe-
sen, Berlin.
Kichenin, J., Van, K.D. and Boytard, K. (1996). Finite-element simulation of a new two-dissipa-
tive mechanisms model for bulk medium-density polyethylene. Journal of Materials Science,
Vol. 31, No. 6, pp.1653–1661.
Koneru, S., Masad, E. and Rajagopal, K.R., (2008). A thermomechanical framework for modeling
the compaction of asphalt mixes. Mechanics of Materials, Vol. 40, No. 10, pp.846–864.
Krishnan, J.M. and Rao, C.L. (2000). Mechanics of air voids reduction of asphalt concrete using
mixture theory. International Journal of Engineering Science, Vol.38, No.12, pp.1331–1354.
Krishnan, J.M. and Rajagopal, K.R. (2004). Thermodynamic framework for the constitutive mod-
eling of asphalt concrete: theory and applications. Journal of Materials in Civil Engineering,
Vol.16, pp155–166.
Li, G., Li, Y., Metcalf, J.B. and Pang, S.-S. (1999). Elastic modulus prediction of asphalt concrete.
Journal of Materials in Civil Engineering. Vol. 11, pp.236–241.
Li, Y.Q. and Metcalf, J.B. (2005). Two-step approach to prediction of asphalt concrete modulus
from two-phase micromechanical models. Journal of Materials in Civil Engineering, Vol.17,
No.4, pp. 407–415.
Lundberg, G. (1939). Elastische berührung zweier halbräume, Forschung auf dem Gebiete des Ing-
enieurwesens: Band 10, pp. 201–211, Göteborg.
Masad, E., Jandhyala, V.K., Dasgupta, N., Somadevan, N. and Shashidhar, N. (2002). Character-
ization of air void distribution in asphalt mixes using x-ray computed tomography. Journal
of Materials in Civil Engineering. Vol.14, pp.122–129.
Masad, E.A., Kassem, E.A. and Chowdhury, A. (2009). Application of imaging technology to im-
prove the laboratory and field compaction of HMA. 0-5261-1. Texas Transportation Institute,
College Station, TX.
Nijboer, L.W. (1948). Plasticity as a factor in the design of sense bituminous road carpets. Elsevier,
New York.
Papagiannakis, A.T., Abbas, A. and Masad, E. (2002). Micromechanical analysis of viscoelastic
properties of asphalt concretes. Transportation Research Record, No.1789, pp.113–120.
Partl, M.N., Alexander, F. and Jonsson, M. (2007a). Comparison of laboratory compaction meth-
ods using x-ray computer tomography. Road Materials and Pavement Design, Vol. 8, No. 2,
pp.139–164.
Partl, M.N., Alexander, F. and Jonsson M. (2007b). Gytatory compaction analysis using computer
tomograhy. Road Materials and Pavement Design, Vol. 8, No. 2, pp.401–422.
Renken, P., (1980). Verdichtbarkeit von asphaltbetongemischen und ihr einfluss auf die satndfes-
tigkeit (Compactibility of asphalt mixtures and effect of it on bearing capacity). Technische
Universitat Carola-Wilhelmina, Braunschweig.
Reuss, A. (1929). Berechnung der fliessgrenze von mischkristallen auf grund der plastizitats-
bedingung fur einkristalle , Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 9,
pp.49–58.
Shell International Petroleum Company Limited (1978). Shell Pavement Design Manual-Asphalt
Pavements and Overlays for Road Traffi c. London.
Tashman, L., Masad, E., Zbib, H., Little, D. and Kaloush, K. (2005). Microstructural viscoplastic
continuum model for permanent deformation in asphalt pavements. Journal of Engineering
Mechanics, Vol.131, No.1, pp.48–57.
Tvergaard, V. (1981). Influence of voids on shear band instabilities under plane strain condition.
International Journal of Fracture Mechanics, Vol. 17, pp.389–407.

