Page 181 - Modeling of Chemical Kinetics and Reactor Design
P. 181

Reaction Rate Expression  151

                                All other reversible second-order rate equations have the same
                              solution with the boundary conditions assumed in Equation 3-176.
                              Table 3-4 gives solutions for some reversible reactions.

                                        GENERAL REVERSIBLE REACTIONS


                                Integrating the rate equation is often difficult for orders greater than
                              1 or 2. Therefore, the differential method of analysis is used to search
                              the form of the rate equation. If a complex equation of the type below
                              fits the data, the rate equation is:



                                                          Table 3-4
                                           Rate equations for opposing reactions

                              Stoichio-
                                                            Rate equation a
                              metric
                              equation      Differential form         Integrated form
                                                  x −
                               [
                              AZ         dx  =  ka − )  k x   
                                              (
                                                      −1
                                             1
                                                0
                                         dt
                                                               
                                                  x −
                                                         +
                               [
                                              (
                              AZ         dx  =  ka − )  k ( x x ) 
                                                            0
                                                      −1
                                             1
                                                0
                                         dt                      x  e  ln    x  e     =  kt
                                                                              1
                                                                          x
                                                         x 
                                                                       e
                                                  x −
                                [
                              2 AZ       dx  =  ka − )  k  −1        a  0    x − 
                                              (
                                             1
                                                0
                                         dt              2    
                                                              
                                         dx      x          
                              A[2 Z        =  ka −    −  kx
                                              
                                             1
                                                0
                                                       −1
                                         dt       2            
                                                                               x a −
                               [ +
                                                  x −
                                                                                     e
                                                                           0 e
                              AY Z       dx  =  ka − )  k x  2        x e  ln   ax + (  0  x )   =  kt
                                              (
                                                0
                                                      −1
                                                                                          1
                                             1
                                                                              (
                                         dt                      2 2a −  x  e    ax −  x)  
                                                                                e
                                                                   0
                                                                             0
                                                                            2
                                                                           (
                                                                            0
                                + [
                                                                                 e
                                                                          e
                              AB Z       dx  =  ka −  x) 2  −  k x  x e  ln   xa − xx )   =  kt
                                              (
                                                       −
                                                                                      1
                                             1
                                                0
                                                        1
                                                                  2
                                                                           2
                                         dt                      a − x 2    ax −  x)  
                                                                            (
                                                                  0   e    0  e
                                + [
                                     +
                                                    2
                                                   )
                                              (
                              AB Y Z     dx  =  ka −  x) − kx  2  
                                                       −
                                                0
                                                        1
                                             1
                                         dt                        x  e  ln    xa (  0  − 2 x ) + a x   =  kt
                                                                                       0
                                                                                         e
                                                                                   e
                                                         x
                                [
                                   +
                                                                                0
                                                                        e
                                                                   0
                                                    2
                              2AY Z      dx  = ka  0  − x ) − k  1    2     2 aa (  0  − x )    ax (  e  −  x)    1
                                              (
                                             1
                                         dt              2    
                              a
                               In all cases x is the amount of A consumed per unit volume. The concentration of B is
                               taken to be the same as that of A.
                              (Source: Laidler, K. J., 1987. Chemical Kinetics, 3rd ed., Harper Collins Publishers.)
   176   177   178   179   180   181   182   183   184   185   186