Page 178 - Modeling of Chemical Kinetics and Reactor Design
P. 178
148 Modeling of Chemical Kinetics and Reactor Design
Integrating Equation 3-161 between the boundary conditions t = 0,
C = C AO and t = t, C = C gives
A
A
A
α
− 1 ln [C A − ] C A = t (3-162)
k + k C AO
1 2
That is:
α
α
− 1 ln ( [ C A − ) − (C AO − )] = t (3-163)
ln
k 1 + k 2
Substituting Equation 3-160 into Equation 3-163 gives
(
kC −C )
− ln C A − 2 AO BO
k 1 + k 2
(
kC −C ) (3-164)
− ln C AO − 2 AO BO = (k 1 + )t
k
2
k 1 + k 2
( k + )C − k C + k C
k
− ln 1 2 A 2 AO 2 BO
(k 1 + ) (3-165)
k
2
k C + kC − kC + kC
2
−ln 1 AO 2 AO + ) AO 2 BO =(k 1 + )t
k
2
(k 1 k 2
( [ { )]
k
k
− ln k 1 + )C A − (C AO − C BO
2
2
(3-166)
ln
− [kC AO + k C BO ]} =(k 1 + )t
k
2
2
1
or
k 1
+1 C A −(C AO −C BO )
− k 2 1 + )t (3-167)
k
ln
=(k
2
k 1 C +C
k 2 AO BO