Page 174 - Modeling of Chemical Kinetics and Reactor Design
P. 174

144    Modeling of Chemical Kinetics and Reactor Design

                                Substituting Equation 3-147 into Equation 3-149 gives

                                              ln( k 2  k ) 
                                                   1
                                           k 
                                 C        − 2        
                                                  k
                                       =  e                                             (3-150)
                                  B max         k − 1   
                                                2
                                 C
                                   AO
                                Taking the natural logarithm gives
                                   C B           k       k 
                                 ln  max  =   −   2    ln   2                       (3-151)
                                   C           k −  k     k 
                                     AO          2   1      1
                                Treating k /(k   – k ) as an exponent and removing the natural
                                              2
                                                   1
                                          2
                              logarithm gives
                                               k 2  
                                                 k 
                                 C         k     k − 1  
                                               2
                                  B max  =   1                                        (3-152)
                                 C AO     k 
                                           2
                                This shows that  C B max  /C AO  depends only on k  and k , and k  can
                                                                                   2
                                                                                          2
                                                                            1
                              be evaluated from  C    /C   at t  .
                                                  B max  AO    max
                                From stoichiometry:
                                             
                                    
                                 A →  →        C
                                             k 2
                                     k 1
                                         B
                                                                A              B            C
                              Amount at time t = 0             C AO            0            0
                              Amount at time t = t              C              C            C
                                                                 A              B            C
                              and from stiochiometry, (C   – C ) = (C  + C ). That is, C  = (C
                                                       AO    A      B     C           C     AO
                              – C ) – C . The concentration of C in terms of C AO , k , and k  are:
                                 A
                                       B
                                                                                          2
                                                                                  1
                                                                         
                                        
                                 C C  =  1 −  e −  kt 1  −    k 1    e (  −  kt 1  −  e −  k t 2  )
                                 C AO                k − k          
                                                                         
                                        
                                                          1
                                                     2
                                              k            k        
                                      =  1  +  1  e − kt 2  −  2  e −  k t 1          (3-153)
                                            k −  k 1     k −  k 1   
                                                           2
                                              2
   169   170   171   172   173   174   175   176   177   178   179