Page 169 - Modeling of Chemical Kinetics and Reactor Design
P. 169
Reaction Rate Expression 139
Rearranging Equation 3-121 and integrating between the limits gives
C A dC t
∫
∫ − A ) = kdt (3-122)
C AO C A (C O −C A 0
Converting the left side of Equation 3-122 into partial fractions gives
1 ≡ p + q
C ( C − C ) C A C − C A (3-123)
O
A
A
O
1 ≡ p(C – C ) + qC
O A A
Equating the coefficients
Constant 1 = pC O
“C ” 0 = –p + q
A
p = q
p = q = 1
C O
Integrating Equation 3-122 between the limits gives
C A C A t
− ∫ 1 dC A + ∫ 1 dC A ) ∫ (3-124)
= kdt
C C O C A C O (C O − C A 0
AO C AO
C 1 C −C
1
− ln A − ln O A = kt
C
O C AO C O C O −C AO
C C − C C C
ln AO O A = ln B BO = Ckt
C A C − C AO C A C AO O (3-125)
O
The fractional conversion, X , and the initial reaction ratio, θ =
B
A
C BO /C AO , yields