Page 177 - Modeling of Chemical Kinetics and Reactor Design
P. 177

Reaction Rate Expression  147


                                 − ( r A )=−  dC A  = kC A  − k C B                     (3-155)
                                                  1
                                                         2
                                           dt
                                From stoichiometry:

                                                                      A                  B
                              Amount at time t = 0                   C AO               C BO
                              Amount at time t = t                   C A                 C B
                              Amounts that have reacted            C   – C            C  – C
                                                                    AO   A             B    BO
                              and the concentration of B is

                                C  = (C    – C ) + C                                    (3-156)
                                  B     AO     A     BO
                                Substituting Equation 3-156 into Equation 3-155, rearranging and
                              integrating between the limits gives:


                                 C A              dC                 t
                                  ∫  −     − {       A             = dt                 (3-157)
                                                                     ∫
                                      kC  A  k 2  (C AO  − C A ) + C BO }
                                       1
                                 C AO                                0
                                  C A                              t
                                                                   ∫
                                 −  ∫            dC A            = dt
                                                   k
                                      (k 1  + )C A  − (C AO  −C BO )                    (3-158)
                                          k
                                            2
                                                    2
                                  C AO                             0
                                           C A            dC                 t
                                                                             ∫
                                 −    1     ∫                A             = dt         (3-159)
                                       k
                                   k  + )              k    
                                  ( 1   2                2               )   0
                                          C AO  C  −        (C   − C
                                                A               AO     BO
                                                     k 1  + k 2  
                              where
                                       k   
                                 α=     2  (C AO  −C BO )                             (3-160)
                                      k 1  + k 2 
                                Substituting Equation 3-160 into Equation 3-159 becomes


                                          C A            t
                                 −   1    ∫   dC A    =  ∫  dt
                                  k 1  + k 2  C A  − α                                  (3-161)
                                         C AO           0
   172   173   174   175   176   177   178   179   180   181   182