Page 302 - Modeling of Chemical Kinetics and Reactor Design
P. 302

272    Modeling of Chemical Kinetics and Reactor Design

                                 C = C (1  − X )                                         (5-28)
                                              A
                                  A
                                       AO
                                Differentiation of A in Equation 5-27 gives

                                 −dC A  =C AO  dX A                                      (5-29)

                                Substituting Equations 5-26, 5-28, and 5-29 into Equation 5-24 gives


                                     dX             X ){              C )} 2
                                 C AO   A  = kC (1 −  A  C BO  −  C ( 2  AO −  A         (5-30)
                                              AO
                                      dt
                                                              2
                                          = kC    − (1  X  )(C  − C  X  ) 2              (5-31)
                                              AO      A   BO     AO   A
                                                        
                                                                         
                                     dX                       C        2
                                 C AO   A  = kC (1 − X ) C AO  BO  −2 X A
                                              AO
                                                      A
                                                                         
                                      dt                     C AO     
                                                        
                                 dX                           2
                                          2
                                    A  =  kC (1 −  X )(θ  − 2 X )                        (5-32)
                                  dt      AO     A   B      A
                              where  θ  = C   /C   . Rearranging Equation 5-32 and integrating
                                      B     BO  AO
                              between the limits t = 0, X  = 0, t = t      , X  = X       gives
                                                        A          holding time  A  AF=0.9
                                                                 =
                                                                tt holding time
                                 X A 09= .   dX
                                   ∫            A      2  =  kC 2 AO  ∫   dt             (5-33)
                                                                    =
                                           A
                                                     A
                                 X A 0=  ( 1− X )(θ B  − 2 X )      t 0
                                The integral on the left side of Equation 5-33 can be expressed by
                              partial fraction to give
                                         1          ≡   A   +    B     +     C
                                 1− (  X A  )( B  −  2X A ) 2  1− X A  θ B −  2X A  ( B −  2X A ) 2  (5-34)
                                                                         θ
                                         θ
                                Rearranging Equation 5-34 gives

                                   A θ  −  2X  ) + ( B  1− X  θ  −  2X  )+ ( 1− X  )     (5-35)
                                               2
                                                                       C
                                1 ≡ ( B      A           A  )( B   A          A
                                                                                     2
                                Putting X  = 1 into Equation 5-35 gives 1 = A(θ  – 2)  or
                                         A
                                                                               B
   297   298   299   300   301   302   303   304   305   306   307