Page 303 - Modeling of Chemical Kinetics and Reactor Design
P. 303

Introduction to Reactor Design Fundamentals for Ideal Systems  273

                                 A =    1
                                      B (θ  − ) 2  2                                     (5-36)

                                Putting X  = 0 into Equation 5-35 gives
                                         A

                                1 = Aθ 2 B +Bθ B  +C                                     (5-37)

                                Putting X  = θ /2 into Equation 5-35 yields
                                               B
                                         A
                                       θ  
                                1=C  1−   B                                              (5-38)
                                        2 

                              or


                                 C=   2                                                  (5-39)
                                    2 − θ B

                                Substituting Equations 5-36 and 5-39 into Equation 5-37 gives


                                      θ 2             2
                                1 =     B  2  + θ B  +                                   (5-40)
                                              B
                                                       θ
                                    (θ B  − 2)      ( 2 − )
                                                         B
                                 B=−     2
                                        B (θ  − ) 2  2                                   (5-41)


                                The integral of Equation 5-34 between the limits becomes


                                   X A=09 .
                                 I =  ∫         dX A      2
                                          − (1  X )(θ  −2 X )
                                    X A=0     A   B     A
                                            X A                 X A
                                  =    1     ∫  dX A  −    2     ∫    dX A
                                     B (θ  − ) 2  2  0  1 −  X A  B (θ  − ) 2  2  0  B (θ  − 2 X )
                                                                           A

                                             X A
                                        2          dX A
                                   +         ∫            2                              (5-42)
                                     (2  − θ B)  0  B (θ  −2 X )
                                                        A
   298   299   300   301   302   303   304   305   306   307   308