Page 145 - Modern Control of DC-Based Power Systems
P. 145

Generation Side Control                                      109


              [3] M. Steurer; F. Bogdan, M. Bosworth, O. Faruque, J. Hauer, K. Schoder, et al.,
                 Multifunctional megawatt scale medium voltage DC test bed based on modular mul-
                 tilevel converter (MMC) technology, in 2015 International Conference on Electrical
                 Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), March
                 3 5, 2015, pp. 1, 6.
              [4] V. Staudt, M.K. Jager, A. Rothstein, A. Steimel, D. Meyer, R. Bartelt, et al., Short-
                 circuit protection in DC ship grids based on MMC with full-bridge modules, in
                 2015 International Conference on Electrical Systems for Aircraft, Railway, Ship
                 Propulsion and Road Vehicles (ESARS), March 3 5, 2015, pp. 1, 5.
              [5] Y. Tang, A. Khaligh, On the feasibility of hybrid Battery/Ultracapacitor Energy
                 Storage Systems for next generation shipboard power systems, in 2010 IEEE Vehicle
                 Power and Propulsion Conference (VPPC), September 1 3, 2010, pp. 1, 6.
              [6] C.H. van der Broeck, R.W. De Doncker, S.A. Richter, J. von Bloh, Unified control
                 of a buck converter for wide load range applications, in IEEE Transactions on
                 Industry Applications, in press.
              [7] IEEE recommended practice for 1 kV to 35 kV medium-voltage DC power systems
                 on ships, IEEE Std. 1709 2010, Nov. 2, 2010, pp. 1, 54.
              [8] G. Sulligoi, D. Bosich, L. Zhu, M. Cupelli, A. Monti, Linearizing control of ship-
                 board multi-machine MVDC power systems feeding Constant Power Loads, in 2012
                 IEEE Energy Conversion Congress and Exposition (ECCE), 15 20 2012, pp. 691,
                 697.
              [9] S.D. Sudhoff, K.A. Corzine, S.F. Glover, H.J. Hegner, H.N. Robey Jr, DC link sta-
                 bilized field oriented control of electric propulsion systems, IEEE Trans. Energy
                 Conv. 13 (1) (1998).
              [10] C.H. Rivetta, A. Emadi, G.A. Williamson, R. Jayabalan, B. Fahimi, Analysis and
                 control of a buck DC-DC converter operating with constant power load in sea and
                 undersea vehicles, IEEE Trans. Ind. Applicat. 42 (2) (2006) 559 572.
              [11] A.M. Rahimi, G.A. Williamson, A. Emadi, Loop-cancellation technique: a novel
                 nonlinear feedback to overcome the destabilizing effect of constant-power loads,
                 IEEE Trans. Vehic. Technol. 59 (2) (2010) 650 661.


              FURTHER READING
              Ciezki and Ashton, 1998J.G. Ciezki, R.W. Ashton, The application of feedback lineariza-
                 tion techniques to the stabilization of DC-to-DC converters with constant power
                 loads, in Proceedings of the 1998 IEEE International Symposium on Circuits and
                 Systems, 1998. ISCAS ‘98, 31 May-3 Jun 1998, vol. 3, pp. 526, 529.
              Doerry, 2015N. Doerry, Naval Power Systems: integrated power systems for the continu-
                 ity of the electrical power supply, IEEE Electr. Mag. 3 (2) (2015) 12 21.
              Emadi et al., 2006A. Emadi, A. Khaligh, C.H. Rivetta, G.A. Williamson, Constant power
                 loads and negative impedance instability in automotive systems: definition, modeling,
                 stability, and control of power electronic converters and motor drives, IEEE Trans.
                 Vehic. Technol. 55 (4) (2006) 1112 1125.
   140   141   142   143   144   145   146   147   148   149   150