Page 24 - MODERN ELECTROCHEMISTRY
P. 24

CONTENTS xxiii

           3.4.2.  The Physical  Significance of Activity  Coefficients   ............  253
           3.4.3.  The Activity Coefficient of a Single Ionic Species Cannot Be Measured  .  255
           3.4.4.  The Mean Ionic Activity Coefficient ....................  256
           3.4.5.  Conversion of Theoretical Activity-Coefficient Expressions into a Testable
                  Form     ....................................            257
           3.4.6.  Experimental Determination of Activity Coefficients ...........  260
           3.4.7.  How to Obtain Solute Activities from Data on Solvent Activities .....  261
           3.4.8.  A Second Method to Obtain Solute Activities: From Data on Concentration
                  Cells and Transport Numbers  ............................  263
                  Further Reading  .................................       267

           3.5.   The Triumphs and Limitations of the Debye–Hückel Theory of
                  Activity Coefficients  .........................         268
           3.5.1.  How Well Does the Debye–Hückel Theoretical Expression for Activity
                  Coefficients Predict  Experimental Values?   ................  268
           3.5.2.  Ions Are of Finite  Size,  They Are Not Point Charges  ...........  273
           3.5.3.  The Theoretical Mean Ionic-Activity Coefficient in the Case of Ionic
                  Clouds  with  Finite-Sized Ions   .......................  277
           3.5.4.  The Ion Size Parameter a ..........................     280
           3.5.5.  Comparison of the Finite-Ion-Size Model with Experiment  ........  280
           3.5.6.  The Debye–Hückel Theory of Ionic Solutions: An Assessment..........  286
           3.5.7.  Parentage of the  Theory  of  Ion–Ion Interactions....................  292
                  Further Reading  ................................        293
           3.6.   Ion–Solvent Interactions and the Activity Coefficient .......  293
           3.6.1.  Effect of Water Bound to Ions on the Theory of Deviations from Ideality  293
           3.6.2.  Quantitative Theory of the Activity of an Electrolyte as a Function of the
                  Hydration Number   .............................         295
           3.6.3.  The Water Removal Theory of Activity Coefficients and Its Apparent
                  Consistency with Experiment at High Electrolytic Concentrations  ....  297
           3.7.   The So-called “Rigorous” Solutions of the Poisson–Boltzmann
                  Equation   ...............................               300
           3.8.   Temporary Ion Association in an Electrolytic Solution: Formation
                  of Pairs, Triplets   ...........................         304
           3.8.1.  Positive and Negative Ions Can Stick Together: Ion-Pair Formation  . . .  304
           3.8.2.  Probability of Finding Oppositely Charged Ions near Each Other  .....  304
           3.8.3.  The Fraction of Ion Pairs, According to Bjerrum  .............  307
           3.8.4.  The Ion-Association Constant   of Bjerrum  ...............  309
           3.8.5.  Activity Coefficients, Bjerrum’s Ion Pairs, and Debye’s Free Ions  ....  314
           3.8.6.  From Ion Pairs to Triple Ions to Clusters of Ions  .............  314
           3.9.   The Virial Coefficient Approach to Dealing with Solutions  ....  315
                  Further Reading  .................................       318
           3.10.  Computer Simulation in the Theory of Ionic Solutions .......  319
   19   20   21   22   23   24   25   26   27   28   29