Page 28 - MODERN ELECTROCHEMISTRY
P. 28

CONTENTS xxvii

           4.6.4.  A Second Braking Effect of the Ionic Cloud on the Central Ion: The Electro-
                  phoretic Effect   ...............................        509
           4.6.5.  The Net Drift Velocity of an Ion Interacting with Its  Atmosphere   ....  510
           4.6.6.  Electrophoretic Component  of the  Drift  Velocity   .............  511
           4.6.7.  Procedure for Calculating the Relaxation Component of the Drift Velocity  512
          4.6.8.  Decay Time of  an  Ion  Atmosphere .....................  512
          4.6.9.  The Quantitative Measure of the Asymmetry of the Ionic Cloud around a
                  Moving Ion    .................................          514
           4.6.10.  Magnitude of the Relaxation Force and the Relaxation Component of the
                  Drift Velocity ................................          514
           4.6.11.  Net Drift Velocity and Mobility of an Ion Subject to Ion–Ion Interactions  517
           4.6.12.  The Debye–Hückel–Onsager  Equation   ..................  518
           4.6.13.  Theoretical Predictions of the Debye–Hückel–Onsager Equation versus the
                  Observed  Conductance Curves  .......................    520
           4.6.14.  Changes to  the Debye–Hückel–Onsager Theory of Conductance .  ....  522
           4.7.   Relaxation Processes in Electrolytic Solutions ...........  526
          4.7.1.  Definition of  Relaxation Processes  .....................  526
          4.7.2.  Dissymmetry of  the  Ionic Atmosphere ...................  528
          4.7.3.  Dielectric  Relaxation in  Liquid Water   ...................  530
          4.7.4.  Effects of Ions on the Relaxation Times of the Solvents in Their Solutions  532
                  Further Reading ....................................     533
           4.8.   Nonaqueous Solutions: A Possible New Frontier in Ionics  .....  534
          4.8.1.  Water Is  the Most  Plentiful  Solvent   ....................  534
          4.8.2.  Water Is  Often Not an  Ideal  Solvent  ....................  535
          4.8.3.  More Advantages and Disadvantages of Nonaqueous Electrolyte Solutions  536
           4.8.4.  The Debye–Hückel–Onsager Theory for Nonaqueous Solutions .....  537
          4.8.5.  What Type of Empirical Data Are Available for Nonaqueous
                  Electrolytes?   ................................         538
                  4.8.5.1. Effect of Electrolyte Concentration on Solution Conductivity .  .  538
                  4.8.5.2. Ionic Equilibria and Their Effect on the Permittivity of Electrolyte
                        Solutions  ..............................          540
                  4.8.5.3. Ion–Ion Interactions in Nonaqueous Solutions Studied by
                        Vibrational Spectroscopy   .....................   540
                  4.8.5.4. Liquid Ammonia as a Preferred Nonaqueous Solvent ......  543
                  4.8.5.5.  Other  Protonic Solvents and  Ion  Pairs  ...............  544
          4.8.6.  The Solvent Effect on Mobility at Infinite Dilution ............  544
          4.8.7.  Slope of the       Curve as a Function of the Solvent  ......  545
          4.8.8.  Effect of the Solvent on the Concentration of Free Ions: Ion Association .  547
          4.8.9.  Effect of Ion  Association on Conductivity  .................  548
          4.8.10.  Ion-Pair Formation and Non-Coulombic Forces  ..............  551
          4.8.11.  Triple Ions and Higher Aggregates Formed in Nonaqueous Solutions .  .  552
          4.8.12.  Some Conclusions about the Conductance of Nonaqueous Solutions of
                  True  Electrolytes   ..............................      553
                  Further Reading ....................................     554
   23   24   25   26   27   28   29   30   31   32   33