Page 30 - MODERN ELECTROCHEMISTRY
P. 30
CONTENTS xxix
Further Reading ............................... 610
5.2. Models of Simple Ionic Liquids ................... 611
5.2.1. Experimental Basis for Model Building .................. 611
5.2.2. The Need to Pour Empty Space into a Fused Salt ............. 611
5.2.3. How to Derive Short-Range Structure in Molten Salts from Measurements
Using X-ray and Neutron Diffraction ................... 612
5.2.3.1. Preliminary ............................. 612
5.2.3.2. Radial Distribution Functions. ................... 614
5.2.4. Applying Diffraction Theory to Obtain the Pair Correlation Functions in
Molten Salts ................................. 616
5.2.5. Use of Neutrons in Place of X-rays in Diffraction Experiments ...... 618
5.2.6. Simple Binary Molten Salts in the Light of the Results of X-ray and
Neutron Diffraction Work .............................. 619
5.2.7. Molecular Dynamic Calculations of Molten Salt Structures ........ 621
5.2.8. Modeling Molten Salts ........................... 621
Further Reading................................... 623
5.3 Monte Carlo Simulation of Molten Potassium Chloride ...... 623
5.3.1. Introduction ................................. 623
5.3.2. Woodcock and Singer’s Model.......................... 624
5.3.3. Results First Computed by Woodcock and Singer ............. 625
5.3.4. A Molecular Dynamic Study of Complexing ............... 627
Further Reading ............................... 632
5.4. Various Modeling Approaches to Deriving Conceptual Structures
for Molten Salts ........................... 632
5.4.1. The Hole Model: A Fused Salt Is Represented as Full of Holes as a Swiss
Cheese ................................... 632
5.5. Quantification of the Hole Model for Liquid Electrolytes ..... 634
5.5.1. An Expression for the Probability That a Hole Has a Radius between r and
r + dr .................................... 634
5.5.2. An Ingenious Approach to Determine the Work of Forming a Void of
Any Size in a Liquid ............................ 637
5.5.3. The Distribution Function for the Sizes of the Holes in a Liquid
Electrolyte ................................. 639
5.5.4. What Is the Average Size of a Hole in the Fürth Model? ......... 640
5.5.5. Glass-Forming Molten Salts ........................ 642
Further Reading ................................... 645
5.6. More Modeling Aspects of Transport Phenomena in Liquid
Electrolytes .............................. 646
5.6.1. Simplifying Features of Transport in Fused Salts ............. 646
5.6.2. Diffusion in Fused Salts .......................... 647
5.6.2.1. Self-Diffusion in Pure Liquid Electrolytes May Be Revealed by
Introducing Isotopes ........................ 647