Page 30 - MODERN ELECTROCHEMISTRY
P. 30

CONTENTS xxix

                 Further Reading  ...............................          610
          5.2.   Models of Simple Ionic Liquids ...................       611
          5.2.1.  Experimental Basis  for Model  Building  ..................  611
          5.2.2.  The Need to  Pour Empty Space into a Fused Salt  .............  611
          5.2.3.  How to Derive Short-Range Structure in Molten Salts from Measurements
                 Using X-ray and Neutron Diffraction ...................   612
                 5.2.3.1.  Preliminary  .............................      612
                 5.2.3.2. Radial Distribution Functions.  ...................  614
          5.2.4.  Applying Diffraction Theory to Obtain the Pair Correlation Functions in
                 Molten Salts  .................................           616
          5.2.5.  Use of Neutrons in Place of X-rays in Diffraction Experiments  ......  618
          5.2.6.  Simple Binary Molten Salts in the Light of the Results of X-ray and
                 Neutron Diffraction Work  ..............................  619
          5.2.7.  Molecular Dynamic Calculations of Molten Salt Structures ........  621
          5.2.8.  Modeling Molten Salts   ...........................      621
                 Further Reading...................................        623

          5.3    Monte Carlo Simulation of Molten Potassium Chloride ......  623
          5.3.1.  Introduction  .................................          623
          5.3.2.  Woodcock  and Singer’s Model..........................   624
          5.3.3.  Results First Computed by Woodcock and Singer .............  625
          5.3.4.  A Molecular Dynamic Study  of Complexing   ...............  627
                 Further Reading  ...............................          632
          5.4.   Various Modeling Approaches to Deriving Conceptual Structures
                 for Molten  Salts   ...........................          632
          5.4.1.  The Hole Model: A Fused Salt Is Represented as Full of Holes as a Swiss
                 Cheese   ...................................              632
          5.5.   Quantification of the Hole Model for Liquid Electrolytes  .....  634
          5.5.1.  An Expression for the Probability That a Hole Has a Radius between r and
                 r + dr ....................................               634
          5.5.2.  An Ingenious Approach to Determine the Work of Forming a Void of
                 Any Size in a Liquid  ............................        637
          5.5.3.  The Distribution Function for the Sizes of the Holes in a Liquid
                 Electrolyte  .................................            639
          5.5.4.  What Is the Average Size of a Hole in the Fürth Model?  .........  640
          5.5.5.  Glass-Forming Molten  Salts   ........................   642
                 Further Reading ...................................       645
          5.6.   More Modeling Aspects of Transport Phenomena in Liquid
                 Electrolytes   ..............................            646
          5.6.1.  Simplifying Features of Transport in  Fused Salts  .............  646
          5.6.2.  Diffusion in  Fused Salts   ..........................   647
                 5.6.2.1. Self-Diffusion in Pure Liquid Electrolytes May Be Revealed by
                       Introducing Isotopes  ........................      647
   25   26   27   28   29   30   31   32   33   34   35