Page 25 - MODERN ELECTROCHEMISTRY
P. 25
xxiv CONTENTS
3.10.1. The Monte Carlo Approach ........................ 319
3.10.2. Molecular Dynamic Simulations ...................... 320
3.10.3. The Pair-Potential Interaction ....................... 321
3.10.4. Experiments and Monte Carlo and MD Techniques ............ 322
Further Reading ................................ 323
3.11. The Correlation Function Approach ................. 324
3.11.1. Introduction ................................. 324
3.11.2. Obtaining Solution Properties from Correlation Functions ........ 324
3.12. How Far Has the MSA Gone in the Development of Estimation of
Properties for Electrolyte Solutions? ................ 326
3.13. Computations of Dimer and Trimer Formation in Ionic Solution . 329
3.14. More Detailed Models ........................ 333
Further Reading ................................ 336
3.15. Spectroscopic Approaches to the Constitution of Electrolytic
Solutions ............................... 337
3.15.1 Visible and Ultraviolet Absorption Spectroscopy ............. 338
3.15.2 Raman Spectroscopy ............................ 339
3.15.3 Infrared Spectroscopy ........................... 340
3.15.4 Nuclear Magnetic Resonance Spectroscopy ................ 340
Further Reading.................................. 341
3.16. Ionic Solution Theory in the Twenty-First Century ......... 341
Appendix 3.1. Poisson’s Equation for a Spherically
Symmetrical Charge Distribution ............... 344
Appendix 3.2. Evaluation of the Integral ........ 345
Appendix 3.3. Derivation of the Result, ........... 345
Appendix 3.4. To Show That the Minimum in the versus r Curve Occurs
at ........................... 346
Appendix 3.5. Transformation from the Variable r to the Variable . 347
Appendix 3.6. Relation between Calculated and Observed Activity
Coefficients .......................... 347
CHAPTER 4
ION TRANSPORT IN SOLUTIONS
4.1. Introduction ............................. 361
4.2. Ionic Drift under a Chemical-Potential Gradient: Diffusion .... 363