Page 31 - MODERN ELECTROCHEMISTRY
P. 31

xxx CONTENTS

                  5.6.2.2. Results of Self-Diffusion Experiments ..............  648
           5.6.3.  Viscosity of Molten  Salts  ..........................   651
           5.6.4.  Validity of the Stokes–Einstein Relation in Ionic Liquids . ........  654
           5.6.5.  Conductivity of Pure  Liquid  Electrolytes   .................  656
           5.6.6.  The Nernst–Einstein  Relation in Ionic Liquids   ..............  660
                  5.6.6.1. Degree of Applicability.  ......................  660
                  5.6.6.2. Possible Molecular Mechanisms for Nernst–Einstein Deviations. .  .  662
           5.6.7.  Transport  Numbers in  Pure  Liquid Electrolytes  ..............  665
                  5.6.7.1. Transport Numbers in Fused Salts.  ................  665
                  5.6.7.2. Measurement of Transport Numbers in Liquid Electrolytes. .  .  .  668
                  5.6.7.3. Radiotracer Method of Calculating Transport Numbers in
                        Molten Salts...............................         671
                  Further Reading....................................       673
           5.7.   Using a Hole Model to Understand Transport Processes in Simple
                  Ionic Liquids .............................              674
           5.7.1.  A Simple Approach: Holes in Molten Salts and Transport Processes  . . .  674
           5.7.2.  What Is the Mean Lifetime of Holes in the Molten Salt Model?  .....  676
           5.7.3.  Viscosity in  Terms of the “Flow of  Holes”  .................  677
           5.7.4.  The Diffusion Coefficient from the Hole Model ..............  678
           5.7.5.  Which Theoretical Representation of the Transport Process in Molten Salts
                  CanRationalizetheRelation           ..............        680
           5.7.6.  An Attempt toRationalize           ................      681
           5.7.7.  How Consistent with Experimental Values Is the Hole Model for Simple
                  Molten Salts? ................................            683
           5.7.8.  Ions May Jump into Holes to Transport Themselves: Can They Also
                  Shuffle About? ...............................            686
           5.7.9.  Swallin’s  Model of  Small  Jumps  ......................  691
                  Further Reading  ...............................          693
           5.8.   Mixtures of Simple Ionic Liquids: Complex Formation  ......  694
           5.8.1.  Nonideal Behavior of Mixtures  .  ......................  694
           5.8.2.  Interactions  Lead to  Nonideal Behavior   ..................  695
           5.8.3.  Complex  Ions in  Fused Salts  ........................  696
           5.8.4.  An Electrochemical Approach to Evaluating the Identity of Complex Ions
                  in Molten  Salt  Mixtures  ...........................    697
           5.8.5.  Can One Determine the Lifetime of Complex Ions in Molten Salts?  . . .  699

           5.9.   Spectroscopic Methods Applied to Molten Salts ..........  702
           5.9.1.  Raman Studies of Al Complexes in Low-Temperature “Molten” Systems  705
           5.9.2.  Other  Raman  Studies of Molten  Salts   ...................  706
           5.9.3.  Raman Spectra in Molten     ...................          709
           5.9.4.  Nuclear Magnetic Resonance and Other Spectroscopic Methods Applied
                  to Molten  Salts   ...............................        709
                  Further Reading   ...............................         713
   26   27   28   29   30   31   32   33   34   35   36