Page 108 - Multifunctional Photocatalytic Materials for Energy
P. 108
Graphene photocatalysts 97
[36] A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic
properties of graphene, Rev. Mod. Phys. 81 (1) (2009) 109–162.
[37] J. Luo, J. Kim, J. Huang, Material processing of chemically modified graphene: some
challenges and solutions, Acc. Chem. Res. 46 (10) (2013) 2225–2234.
[38] G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Graphene-based materials for
hydrogen generation from light-driven water splitting, Adv. Mater. 25 (28) (2013)
3820–3839.
[39] K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene, J. Mater. Chem. 20 (12)
(2010) 2277–2289.
[40] A. Mathkar, D. Tozier, P. Cox, P. Ong, C. Galande, K. Balakrishnan, A. Leela Mohana
Reddy, P.M. Ajayan, Controlled, stepwise reduction and band gap manipulation of
graphene oxide, J. Phys. Chem. Lett. 3 (8) (2012) 986–991.
[41] N. Li, G. Liu, C. Zhen, F. Li, L. Zhang, H.-M. Cheng, Battery performance and pho-
tocatalytic activity of mesoporous anatase TiO 2 nanospheres/graphene composites by
template-free self-assembly, Adv. Funct. Mater. 21 (9) (2011) 1717–1722.
[42] B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu, Y. Wang,
Highly dispersive {001} facets-exposed nanocrystalline TiO 2 on high quality graphene
as a high performance photocatalyst, J. Mater. Chem. 22 (15) (2012) 7484–7491.
[43] W.-S. Wang, D.-H. Wang, W.-G. Qu, L.-Q. Lu, A.-W. Xu, Large ultrathin anatase TiO 2
nanosheets with exposed {001} facets on graphene for enhanced visible light photocat-
alytic activity, J. Phys. Chem. C 116 (37) (2012) 19893–19901.
[44] Y. Zhang, Z.-R. Tang, X. Fu, Y.-J. Xu, Engineering the unique 2D mat of graphene
to achieve graphene-TiO 2 nanocomposite for photocatalytic selective transformation:
what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5 (9)
(2011) 7426–7435.
[45] Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, Improving the photocatalytic performance
of graphene-TiO 2 nanocomposites via a combined strategy of decreasing defects of
graphene and increasing interfacial contact, Phys. Chem. Chem. Phys. 14 (25) (2012)
9167–9175.
[46] Z. Wang, B. Huang, Y. Dai, Y. Liu, X. Zhang, X. Qin, J. Wang, Z. Zheng, H. Cheng,
Crystal facets controlled synthesis of graphene@TiO 2 nanocomposites by a one-pot
hydrothermal process, CrystEngComm 14 (5) (2012) 1687–1692.
[47] G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO 2 nanoparticles
assembled on graphene oxide nanosheets with high photocatalytic activity for removal of
pollutants, Carbon 49 (8) (2011) 2693–2701.
[48] L.M. Pastrana-Martínez, A.M.T. Silva, N.N.C. Fonseca, J.R. Vaz, J.L. Figueiredo,
J.L. Faria, Photocatalytic reduction of CO 2 with water into methanol and ethanol using
graphene derivative–TiO 2 composites: effect of ph and copper(I) oxide, Top. Catal. 59
(15-16) (2016) 1279–1291.
[49] X.-Y. Zhang, H.-P. Li, X.-L. Cui, Y. Lin, Graphene/TiO 2 nanocomposites: synthesis,
characterization and application in hydrogen evolution from water photocatalytic split-
ting, J. Mater. Chem. 20 (14) (2010) 2801–2806.
[50] Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen, H. Dai, TiO 2 nanocrystals grown
on graphene as advanced photocatalytic hybrid materials, Nano Res. 3 (10) (2010)
701–705.
[51] X. Cao, G. Tian, Y. Chen, J. Zhou, W. Zhou, C. Tian, H. Fu, Hierarchical compos-
ites of TiO 2 nanowire arrays on reduced graphene oxide nanosheets with enhanced
photocatalytic hydrogen evolution performance, J. Mater. Chem. A 2 (12) (2014)
4366–4374.