Page 107 - Multifunctional Photocatalytic Materials for Energy
P. 107

96                                 Multifunctional Photocatalytic Materials for Energy

           [16]  Q. Xiang, B. Cheng, J. Yu, Graphene-based photocatalysts for solar-fuel generation,
              Angew. Chem. Int. Ed. 54 (39) (2015) 11350–11366.
           [17]  J. Low, B. Cheng, J. Yu, M. Jaroniec, Carbon-based two-dimensional layered materials
              for photocatalytic CO 2  reduction to solar fuels, Energy Storage Mater. 3 (2016) 24–35.
           [18]  S.M. Tan, A. Ambrosi, C.K. Chua, M. Pumera, Electron transfer properties of chemi-
              cally reduced graphene materials with different oxygen contents, J. Mater. Chem. A 2
              (27) (2014) 10668–10675.
           [19]  B.F. Machado, P. Serp, Graphene-based materials for catalysis, Catal. Sci. Technol. 2 (1)
              (2011) 54–75.
           [20]  S. Morales-Torres, L.M. Pastrana-Martínez, J.L. Figueiredo, J.L. Faria, A.M.T. Silva,
              Design of graphene-based TiO 2  photocatalysts - a review, Environ. Sci. Pollut. Res. 19
              (9) (2012) 3676–3687.
           [21]  S. Pei, H.-M. Cheng, The reduction of graphene oxide, Carbon 50 (9) (2012) 3210–3228.
           [22]  C.K. Chua, M. Pumera, Chemical reduction of graphene oxide: a synthetic chemistry
              viewpoint, Chem. Soc. Rev. 43 (1) (2014) 291–312.
           [23]  J. Du, X. Lai, N. Yang, J. Zhai, D. Kisailus, F. Su, D. Wang, L. Jiang, Hierarchically
              ordered macro−mesoporous tio 2 −graphene composite films: improved mass transfer,
              reduced charge recombination, and their enhanced photocatalytic activities, ACS Nano
              5 (1) (2010) 590–596.
           [24]  P.V.  Kamat, Graphene-based nanoarchitectures. Anchoring semiconductor and metal
              nanoparticles on a two-dimensional carbon support, J. Phys. Chem. Lett. 1 (2) (2009)
              520–527.
           [25]  J. Albero, H. Garcia, Doped graphenes in catalysis, J. Mol. Catal. A Chem. 408 (2015)
              296–309.
           [26]  L.K. Putri, W.-J. Ong, W.S. Chang, S.-P. Chai, Heteroatom doped graphene in photoca-
              talysis: a review, Appl. Surf. Sci. 358 (Part A) (2015) 2–14.
           [27]  X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, N-doping of
              graphene through electrothermal reactions with ammonia, Science 324 (5928) (2009)
              768–771.
           [28]  L.-S. Zhang, X.-Q. Liang, W.-G. Song, Z.-Y. Wu, Identification of the nitrogen species
              on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell,
              Phys. Chem. Chem. Phys. 12 (38) (2010) 12055–12059.
           [29]  Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free syn-
              thesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine
              and its excellent electrocatalysis, ACS Nano 5 (6) (2011) 4350–4358.
           [30]  H. Wang, Y. Zhou, D. Wu, L. Liao, S. Zhao, H. Peng, Z. Liu, Synthesis of boron-doped
              graphene monolayers using the sole solid feedstock by chemical vapor deposition, Small
              9 (8) (2013) 1316–1320.
           [31]  R.  Li, Z.  Wei, X.  Gou, W.  Xu, Phosphorus-doped graphene nanosheets as efficient
              metal- free oxygen reduction electrocatalysts, RSC Adv. 3 (25) (2013) 9978–9984.
           [32]  Z. Yang, Z. Yao, G. Li, G. Fang, H. Nie, Z. Liu, X. Zhou, X.A. Chen, S. Huang, Sulfur-
              doped graphene as an efficient metal-free cathode catalyst for oxygen reduction, ACS
              Nano 6 (1) (2011) 205–211.
           [33]  H.L. Poh, P. Šimek, Z. Sofer, M. Pumera, Sulfur-doped graphene via thermal exfoliation
              of graphite oxide in H 2 S, SO 2 , or CS 2  gas, ACS Nano 7 (6) (2013) 5262–5272.
           [34]  S. Navalon, A. Dhakshinamoorthy, M. Alvaro, H. Garcia, Carbocatalysis by graphene-
              based materials, Chem. Rev. 114 (12) (2014) 6179–6212.
           [35]  P. Avouris, Graphene: electronic and photonic properties and devices, Nano Lett. 10 (11)
              (2010) 4285–4294.
   102   103   104   105   106   107   108   109   110   111   112