Page 109 - Multifunctional Photocatalytic Materials for Energy
P. 109
98 Multifunctional Photocatalytic Materials for Energy
[52] P. Dong, Y. Wang, L. Guo, B. Liu, S. Xin, J. Zhang, Y. Shi, W. Zeng, S. Yin, A facile
one-step solvothermal synthesis of graphene/rod-shaped TiO 2 nanocomposite and its
improved photocatalytic activity, Nanoscale 4 (15) (2012) 4641–4649.
[53] N. Zhang, M.-Q. Yang, S. Liu, Y. Sun, Y.-J. Xu, Waltzing with the versatile platform
of graphene to synthesize composite photocatalysts, Chem. Rev. 115 (18) (2015)
10307–10377.
[54] X. Xie, K. Kretschmer, G. Wang, Advances in graphene-based semiconductor photocat-
alysts for solar energy conversion: fundamentals and materials engineering, Nanoscale
7 (32) (2015) 13278–13292.
[55] G. Williams, B. Seger, P.V. Kamat, TiO 2 -graphene nanocomposites. UV-assisted photo-
catalytic reduction of graphene oxide, ACS Nano 2 (7) (2008) 1487–1491.
[56] L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, J.L. Figueiredo, J.L. Faria,
P. Falaras, A.M.T. Silva, Advanced nanostructured photocatalysts based on reduced
graphene oxide–TiO 2 composites for degradation of diphenhydramine pharmaceutical
and methyl orange dye, Appl. Catal. B Environ. 123–124 (2012) 241–256.
[57] Y.H. Ng, A. Iwase, N.J. Bell, A. Kudo, R. Amal, Semiconductor/reduced graphene ox-
ide nanocomposites derived from photocatalytic reactions, Catal. Today 164 (1) (2011)
353–357.
[58] J. Liu, H. Bai, Y. Wang, Z. Liu, X. Zhang, D.D. Sun, Self-assembling TiO 2 nanorods
on large graphene oxide sheets at a two-phase interface and their anti-recombination in
photocatalytic applications, Adv. Funct. Mater. 20 (23) (2010) 4175–4181.
[59] S. Liu, C. Liu, W. Wang, B. Cheng, J. Yu, Unique photocatalytic oxidation reactivity and
selectivity of TiO 2 -graphene nanocomposites, Nanoscale 4 (10) (2012) 3193–3200.
[60] W. Wang, J. Yu, Q. Xiang, B. Cheng, Enhanced photocatalytic activity of hierarchical
macro/mesoporous TiO 2 –graphene composites for photodegradation of acetone in air,
Appl. Catal. B Environ. 119–120 (2012) 109–116.
[61] W. Tu, Y. Zhou, Q. Liu, S. Yan, S. Bao, X. Wang, M. Xiao, Z. Zou, An in situ simultaneous
reduction-hydrolysis technique for fabrication of TiO 2 -graphene 2D sandwich-like hybrid
nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and
coupling of CO 2 into methane and ethane, Adv. Funct. Mater. 23 (14) (2013) 1743–1749.
[62] M.S.A. Sher Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, Green synthesis of bipha-
sic TiO 2 –reduced graphene oxide nanocomposites with highly enhanced photocatalytic
activity, ACS Appl. Mater. Interfaces 4 (8) (2012) 3893–3901.
[63] J. Liu, L. Liu, H. Bai, Y. Wang, D.D. Sun, Gram-scale production of graphene oxide–
TiO 2 nanorod composites: towards high-activity photocatalytic materials, Appl. Catal.
B Environ. 106 (1–2) (2011) 76–82.
[64] J.S. Lee, K.H. You, C.B. Park, Highly photoactive, low bandgap TiO 2 nanoparticles
wrapped by graphene, Adv. Mater. 24 (8) (2012) 1084–1088.
[65] Q. Xiang, J. Yu, M. Jaroniec, Enhanced photocatalytic H 2 -production activity of
graphene-modified titania nanosheets, Nanoscale 3 (9) (2011) 3670–3678.
[66] L.M. Pastrana-Martínez, S. Morales-Torres, V. Likodimos, P. Falaras, J.L. Figueiredo,
J.L. Faria, A.M.T. Silva, Role of oxygen functionalities on the synthesis of photocatalyti-
cally active graphene–TiO 2 composites, Appl. Catal. B Environ. 158–159 (2014) 329–340.
[67] Y. Feng, N. Feng, Y. Wei, G. Zhang, An in situ gelatin-assisted hydrothermal synthesis
of ZnO-reduced graphene oxide composites with enhanced photocatalytic performance
under ultraviolet and visible light, RSC Adv. 4 (16) (2014) 7933–7943.
[68] B. Weng, M.-Q. Yang, N. Zhang, Y.-J. Xu, Toward the enhanced photoactivity and pho-
tostability of ZnO nanospheres via intimate surface coating with reduced graphene ox-
ide, J. Mater. Chem. A 2 (24) (2014) 9380–9389.