Page 106 - Multifunctional Photocatalytic Materials for Energy
P. 106

Graphene photocatalysts                                            95

           Acknowledgments


           Financial support for this work was provided by “AIProcMat@N2020—Advanced Industrial
           Processes and Materials for a Sustainable Northern Region of Portugal 2020,” with the refer-
           ence  NORTE-01-0145-FEDER-000006,  supported by  Norte  Portugal  Regional  Operational
           Programme (NORTE 2020), under the Portugal 2020 Partnership  Agreement, through the
           European Regional Development Fund (ERDF) and the Project POCI-01-0145-FEDER-006984,
           Associate Laboratory LSRE-LCM funded by ERDF through COMPETE2020—Programa
           Operacional Competitividade e Internacionalização (POCI); and by national funds through
           FCT—Fundação para a Ciência e a Tecnologia. LMPM, SMT, and AMTS acknowledge the FCT
           Investigator Programme (IF/01248/2014, IF/00573/2015, and IF/01501/2013, respectively) with
           financing from the European Social Fund and the Human Potential Operational Programme.
           LMPM also acknowledges the Spanish Ministry of Economy and Competitiveness (MINECO)
           for a Ramon y Cajal research contract (RYC-2016-19347).


           References

             [1]  S. Perathoner, G. Centi, CO 2  recycling: a key strategy to introduce green energy in the
                 chemical production chain, ChemSusChem 7 (5) (2014) 1274–1282.
             [2]  G. Centi, E.A. Quadrelli, S. Perathoner, Catalysis for CO 2  conversion: a key technology
                 for rapid introduction of renewable energy in the value chain of chemical industries,
                 Energy Environ. Sci. 6 (6) (2013) 1711–1731.
             [3]  P.D. Tran, L.H. Wong, J. Barber, J.S.C. Loo, Recent advances in hybrid photocatalysts
                 for solar fuel production, Energy Environ. Sci. 5 (3) (2012) 5902–5918.
             [4]  A. Corma, H. Garcia, Photocatalytic reduction of CO 2  for fuel production: possibilities
                 and challenges, J. Catal. 308 (2013) 168–175.
             [5]  A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Photocatalytic CO 2  reduction by
                 TiO 2  and related titanium containing solids, Energy Environ. Sci. 5 (11) (2012) 9217–9233.
             [6]  S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, Toward solar fuels: photocatalytic
                 conversion of carbon dioxide to hydrocarbons, ACS Nano 4 (3) (2010) 1259–1278.
             [7]  H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic
                 water splitting process: a review, Renew. Sust. Energ. Rev. 43 (2015) 599–610.
             [8]  A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor elec-
                 trode, Nature 238 (5358) (1972) 37–38.
             [9]  T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon diox-
                 ide in aqueous suspensions of semiconductor powders, Nature 277 (5698) (1979) 637–638.
             [10]  K.S.  Novoselov, A.K.  Geim, S.V.  Morozov, D.  Jiang, Y.  Zhang, S.V.  Dubonos, I.V. 
                 Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science 306
                 (5696) (2004) 666–669.
             [11]  A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (3) (2007) 183–191.
             [12]  A.K. Geim, Graphene: status and prospects, Science 324 (5934) (2009) 1530–1534.
             [13]  S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, A. Abdala, Recent advances in
                 graphene based gas sensors, Sensors Actuators B Chem. 218 (2015) 160–183.
             [14]  H. Wu, Y. Zhang, L. Cheng, L. Zheng, Y. Li, W. Yuan, X. Yuan, Graphene based archi-
                 tectures for electrochemical capacitors, Energy Storage Mater. 5 (2016) 8–32.
             [15]  O.  Akhavan,  A.  Meidanchi,  E.  Ghaderi,  S.  Khoei,  Zinc  ferrite  spinel-graphene  in
                 magneto- photothermal therapy of cancer, J. Mater. Chem. B 2 (21) (2014) 3306–3314.
   101   102   103   104   105   106   107   108   109   110   111