Page 212 - Multifunctional Photocatalytic Materials for Energy
P. 212
Metal-based semiconductor nanomaterials for photocatalysis 197
e CB 2
CB 3 e
CB 2 CB 2
VB 2 VB 3
VB 2 h + VB 2 h +
Core-shell type structure Janus type structure
Fig. 9.8 Main morphologies of photocatalytic composites.
Table 9.1 Overview of some photocatalytic systems recently
developed for water splitting reaction under visible light
(λ > 400 nm) and UV-A (λ > 300 nm)
Wavelength
Photocatalyst Band gap (eV) used (nm) Ref.
TiO 2 (anatase)–TiO 2 (rutile) 2.78 λ > 300 [58]
[46]
Tantalates–NiO 3.6–4.0 λ > 310 [59]
Perovskites–NiOx 3.2–4.7 λ < 350 [17]
Noble metal/TiO 2 -CdS N/A λ > 400 [60]
(Ga 0.88 Zn 0.12 )(N 0.88 O 0.12 ) –Rh 2- xCrxO 3 2.6 λ > 400 [17]
Cu 1.94 S-ZnxCd 1− xS (0 ≤ x ≤ 1) 2.57–3.88 λ > 420 [61]
CdS/ZnS N/A λ > 420 [62]
CdSe/CdS-MoS 3 c.1.75–2.44 450 [63]
[64]
MoS 2 /CuInS 2 N/A λ > 420 [65]
Cu 2 O/CuO 1.54–2.01 λ > 400 [66]
Ni 3 N/CdS 2.54 λ > 420 [67]
BaZrO 3 /BaTaO 2 N 1.8 λ > 420 [68]
Ir/CoOx/Ta 3 N 5 -Rh,Ru/SrTiO 3 ~2.1 λ > 420 [69]
Pt/BaZrO 3 -BaTaO 2 N 1.8–1.9 λ > 420 [70]
TaO x N: Tantalum oxynitride
Ru,Rh/SrTiO3-BiVO4 N/A λ > 420 [71]
WO 3 /BiVO 4 ~2.4 λ > 420 [72]
CdS-ZnO/RGO N/A λ > 400 [73]
RGO: reduced graphene oxide
CdS-TaON/RGO 2.4–2.5 λ > 420 [74]
Sulfide-based semiconductors 2.0–2.3 λ > 420 [17]