Page 136 - Book Hosokawa Nanoparticle Technology Handbook
P. 136

FUNDAMENTALS                                            CH. 2 STRUCTURAL CONTROL OF NANOPARTICLES
                  and then removing of iron by hydrochloric acid [30].  [12] Y. Saito and S. Bandow: Basic of Carbon Nanotubes
                  The damages of SWNT themselves are not so serious  (In Japanese), Corona Campany (1998), R. Saito,
                  under these purification process. Scanning electron  G. Dresselhaus and M.S. Dresselhaus:  Physical
                  microscope (SEM) and TEM image of these purified   Properties of Carbon Nanotubes Imperial College
                  SWNTs are shown in Fig. 2.7.3(c) and (d). It can be  Press (1998).
                  seen in their images of catalyst iron particles, they are  [13] T. W.  Ebbesen:  Physics Today,  49, 26–32 (1996);
                  almost removed. By the analysis of energy dispersive  M. Terrones:  Int. Mater. Rev.,  49, 325–377 (2004);
                  X-ray (EDX), the content of iron reduced from 11 to
                  0.5% by this purification [31].                    Y. Ando, X. Zhao, T. Sugai and M. Kumar:  Mater.
                    Among the three kinds of production methods of   Today, 7, 22–29 (2004).
                  CNT, here the arc discharge method is described to  [14] Y. Ando, X. Zhao: New Diamond Frontier Carbon
                  prepare MWNT and SWNT. In the case of arc          Technol., 16, 123–137 (2006).
                  discharge in pure hydrogen gas we can produce high-  [15] M. Kusunoki, M. Rokkaku and T. Suzuki: Appl. Phys.
                  crystalline MWNTs with very thin innermost tube. In  Lett., 71, 2620–2622 (1997).
                  this case, the diameter of MWNT is 10–30 nm, but the  [16] Y. Saito, M. Inagaki, H. Shinohara, H. Nagashima,
                  length is larger than 100  m. So-called aspect ratio is  M. Ohkohchi and Y. Ando:  Chem. Phys. Lett.,  200,
                  larger than 1,000. It is far from “nanoparticles”.  643–648 (1992).
                    On the other hand, in order to produce SWNT, addi-
                  tion of catalyst metal particles is necessary. Diameter  [17] Y. Ando:  Jpn. J. Appl. Phys.,  32, L1342–L1345
                  of each SWNT is 1–2 nm and the length is longer than  (1993).
                  1  m, but they usually form bundles of a number of  [18] Y. Ando:  Fullerene Sci. & Technol.,  2, 173–180
                  SWNTs. In appearance, they seem like powder similar  (1994).
                  to nanoparticles. By FH-arc method using Fe catalyst  [19] M.  Wang, X. Zhao, M. Ohkohchi and  Y.  Ando:
                  and H gas mixture, macroscopic SWNT net of low-    Fullerene Sci. & Technol., 4, 1027–1039 (1996).
                       2
                                      3
                  green density, 1 mg/cm , and high-specific surface  [20] Y.  Ando, X. Zhao and M. Ohkohchi:  Carbon,  35,
                                 2
                  area, several 100 m /g, can be obtained.           153–158 (1997).
                                                                 [21] X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi
                                                                     and Y. Ando: Carbon, 35, 775–781 (1997).
                                   References
                                                                 [22] Y. Ando, X. Zhao and M. Ohkohchi:  Jpn. J. Appl.
                   [1] S. Iijima: Nature, 354, 56–58 (1991).         Phys., 37, L61–L63 (1998).
                   [2] Y. Ando, S. Iijima: Jpn. J. Appl. Phys., 32, L107–L109  [23] L.C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando
                      (1993).                                        and S. Iijima: Nature, 408, 50 (2000).
                   [3] W. Krätschmer, L.D. Lamb, K. Fostiropoulos and  [24] X. Zhao, Y. Liu, S. Inoue, T. Suzuki, R.O. Jones and
                      D.R. Huffman: Nature, 347, 354–358 (1990).     Y. Ando: Phys. Rev. Lett., 92, 125502/1–4 (2004).
                   [4] H.W. Kroto, J.R. Hearth, S.C.O’Brien, R.F. Curl and  [25] H. Dai, A.G. Rinzler, P. Nikolaev, A. Tess, D.T. Colbert
                      R.E. Smalley: Nature, 318, 162–163 (1985).     and R.E. Smalley:  Chem. Phys. Lett.,  260, 471–475
                   [5] Y.  Ando, M. Ohkohchi: J. Crystal Growth,  60,  (1996).
                      147–149 (1982).                            [26] C. Journet,  W.K. Maser, P. Bernier,  A. Loiseau,
                   [6] R. Uyeda: J. Crystal Growth, 45, 485–489 (1978).  M. Lamy de la Chapelle, S. Lefrant, P. Deniard,
                   [7] S. Iijima, T. Ichihashi: Nature, 363, 603–605 (1993).  R. Lee and J.E. Fisher: Nature 388, 756–758 (1997).
                   [8] D. S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman,  [27] Y.  Ando, X. Zhao, K. Hirahara, K. Suenaga,
                      R. Savoy, J.  Vazquez and R. Beyers:  Nature,  363,  S.R. Bandow and S. Iijima:  Chem. Phys. Lett.,  323,
                      605–606 (1993).                                580–585 (2000).
                   [9] T. Sugai, H.  Yoshida,  T. Shimada,  T. Okazaki,  [28] P. Nikolaev, M.J.  Bronikowski, R.K. Bradley,
                      H. Shinohara and S. Bandow: Nano Lett., 3, 769–773  F. Rohmund, D.T. Colbert, K.A. Smith and
                      (2003).                                        R.E. Smalley: Chem. Phys. Lett., 313, 91–97 (1999).
                  [10] A.  Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit,  [29] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura
                      J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler,  and S. Iijima: Science, 306, 1362–1364 (2004).
                      D.T. Colbert, G.E. Scuseria, D. Tomànek, J.E. Fisher  [30] X. Zhao, S. Inoue, M. Jinno, T. Suzuki and Y. Ando:
                      and R.E. Smalley: Science, 273, 483–487 (1996).  Chem. Phys. Lett., 373, 266–271 (2003).
                  [11] M.  José-Yacamán, M.  Yoshida, L. Rendon and  [31] Y. Ando, X. Zhao, S. Inoue, T. Suzuki, M. Ohkohchi
                      J.G. Santiesteban:  Appl. Phys. Lett.,  62, 657–659  and T.  Kadoya:  Trans. Mater. Res. Soc. Jpn.,  30,
                      (1993).                                        1193–1198 (2005).





                  112
   131   132   133   134   135   136   137   138   139   140   141