Page 340 - Book Hosokawa Nanoparticle Technology Handbook
P. 340

5.6 EVALUATION METHODS FOR OXIDE HETEROSTRUCTURES                            FUNDAMENTALS
                                                                 lattice tend to be extended into the SrTiO lattice.
                                                                                                    3
                                                                 From the semi-log plot of the  Ti 3   fraction, the
                                                                 screening length of the charge transfer is estimated to
                                                                 be about 1 nm [12].
                                                                  Considering such charge transfer, it is attempted to
                                                                 form the electronic channel of high mobility on the
                                                                 polarity discontinuity heterointerface between the
                                                                 band insulators of perovskite oxide [13]. Furthermore,
                                                                 by use of this nanoprobing technique, the quantitative
                                                                 determination of oxygen vacancy in the artificially
                                                                 prepared in SrTiO thin film or in the natural grain
                                                                                3
                                                                 boundary and the structural evaluation on the atomic
                                                                 level are conducted [14, 15]. The nanoprobing tech-
                                                                 nique using STEM can directly observe the electronic
                                                                 state at the buried interface with the atomic resolution
                                                                 and will be more and more important for the research
                                                                 of this field in the future.


                                                                                 References
                                                                 [1] A. Tsukazaki, A. Ohtomo and M. Kawasaki:  Oyo
                                                                     Buturi, 74, 1359–1364 (2005) (in Japanese).
                                                                 [2] P.F. Fewster: Rep. Prog. Phys., 59, 1339–1407 (1996).
                                                                 [3] D.A. Mueller, T. Sorsch, S. Moccio, F.H. Baumann,
                                                                     K. Evans-Lutterodt and G. Timp: Nature,  339,
                                                                     758–761 (1999).
                                                                 [4] M. Kawasaki, A. Ohtomo:  Solid State Phys.,  33,
                                                                     59–64 (1998) (in Japanese).
                                                                  [5] J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury
                  Figure 5.6.6                                       and T. Zheleva: Appl. Phys. Lett., 61, 1290–1292 (1992).
                  Spatial distribution of the Ti 3   signal in the vicinity of the  [6] A. Ohtomo, H. Kimura, K. Saito, T. Makino, Y. Sefawa,
                  one and two LaTiO layers.                          H. Koinuma and M. Kawasaki: J. Cryst. Growth,
                                3
                                                                     214/215, 284–288 (2000).
                                                                 [7] A. Ohtomo, M. Kawasaki and H. Ohno: Solid State
                  can be investigated. Fig. 5.6.5 shows the EELS spec-
                  trum of L edge in Ti column (in the middle) and M  Phys., 40, 407–414 (2005) (in Japanese).
                  edge in La column (on the right) detected over the  [8] K. Saito, T. Kurosawa, S. Ueki and H. Funakubo:
                  two-layer LaTiO lattice indicated as the brightest  Shinku, 49, 42–18 (2006) (in Japanese).
                                3
                  spot in the left picture. As shown at the bottom of the  [9] H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki,
                  figure, the spectrum of Ti column can be fitted by lin-  H. Akoh and Y. Tokura: Science, 305, 646–648 (2004).
                  ear combination of the spectra of  Ti 3   and Ti 4   [10] A. Ohtomo: Butsuri, 58, 425–429 (2003) (in Japanese).
                  obtained independently from pure SrTiO 3  and  [11] K. Saito, S. Tsurekawa and I. Tanaka: Materia Japan,
                  LaTiO , respectively. The average valence of Ti for  37, 938–944 (1998) (in Japanese).
                       3
                  each column can be determined from the weighting  [12] A. Ohtomo, H.Y. Hwang: Parity, 19, 18–25 (2004)
                  factor of Ti for each spectrum.                    (in Japanese).
                    Since the excess electrons generated by replacing
                  La 3   for Sr 2   occupies 3d orbit of Ti, the profile of  [13] A. Ohtomo, H.Y. Hwang:  Oyo Buturi,  73, 605–609
                  the Ti 3   component corresponds directly to the elec-  (2004) (in Japanese).
                  tronic density distribution.  The  Ti 3   fraction of  [14] D.A. Mueller, N. Nakagawa, A. Ohtomo, J.L. Grazul
                  LaTiO one and two layer lattice is plotted with the  and H.Y. Hwang: Nature, 430, 657–661 (2004).
                       3
                  La 3   composition in Fig. 5.6.6(a). From the fact that  [15] M. Kim, G. Duscher, N.D. Browning, K. Sohlberg,
                  the Ti 3   peak is broader than the La 3   peak, it is seen  S.T. Pantelides and S.J. Pennycook: Phys. Rev. Lett.,
                  that the distribution of the extra electrons of LaTiO 3  86, 4056–4059 (2001).






                                                                                                        315
   335   336   337   338   339   340   341   342   343   344   345