Page 443 - Book Hosokawa Nanoparticle Technology Handbook
P. 443

7.4 REMOVAL OF NANOPARTICLES                                                 FUNDAMENTALS
                  treatments exhibits high permeate quality because  [6] E. Iritani, S. Nakatsuka, S.  Aoki and  T. Murase:
                  the flocs and PAC are easily retained by the UF    J. Chem. Eng. Jpn., 24, 177–183 (1991).
                  membrane.                                       [7] S. Kimura, S. Sourirajan: AIChE J., 13, 497–503 (1967).
                                                                 [8] J. Murkes, C.G. Carlsson: Crossflow filtration:
                    7.4.3.4 Ultracentrifugal sedimentation           Theory and practice, Wiley, NY (1988).
                  In ultracentrifugal sedimentation, ultracentrifugal  [9] T. Toda: in Encyclopedia of Fluid Mechanics: Slurry
                  force field of several tens of thousands of revolutions  Flow Technology, N.P. Cheremisinoff (Ed.), Gulf
                  per minute is applied to a rotor. In recent years, ultra-  Publishing, Houston, TX, p. 1149 (1985).
                  centrifugal sedimentation is employed for concen-  [10] B.  Culkin, A.D. Armando:  Filtr. Sep.,  29, 376–378
                  trating dilute protein solutions and for separating  (1992).
                  proteins and other large biological molecules from  [11] T. Murase, E. Iritani, P. Chidpong, K.  Yagishita,
                  low-molecular-weight solutes or from much larger   K. Yoshida,  T. Sugiyama and M. Shirato:  Kagaku
                  particles. Fig. 7.4.12 shows the results for ultracen-  Kogaku Ronbunshu, 14, 135–140 (1988).
                  trifugal sedimentation of an aqueous solution of the
                  mixtures of BSA and egg white lysozyme (pI 11.0,  [12] W. Tobler: Filtr. Sep., 19, 329–332 (1982).
                  MW 14,300) measured using Schlieren optics in an  [13] T. Murase, E. Iritani, P. Chidpong, K. Kano, K. Atsumi
                  analytical ultracentrifuge [24]. The angular accelera-  and M. Shirato:  Kagaku Kogaku Ronbunshu,  15,
                  tion   of the rotor is 5,445 rad/s. The symbol r and  630–637 (1989).
                                                         i
                  r in the figure represent the distances from the cen-  [14] K.-Y. Chung, R. Bates and G. Belfort: J. Membr. Sci.,
                   i0
                  ter of rotation to the sedimentation boundary at time  81, 139–150 (1993).
                    and   , respectively. The electrical nature of macro-  [15] V. Gekas, B. Hallström:  Desalination,  77, 195–218
                        0
                  molecules plays a significant role in determining the  (1990).
                  sedimentation behavior in ultracentrifugation of  [16] T. Murase, E. Iritani, P. Chidpong and K. Kano:
                  binary protein mixtures. In the pH range where both  Kagaku Kogaku Ronbunshu, 15, 1179–1186 (1989).
                  protein molecules were electropositive, the mole-
                  cules sediment independently due to the electrostatic  [17] V.G.J. Rodgers, R.E. Sparks:  J. Membr. Sci.,  68,
                  repulsive force acting between BSA and lysozyme    149–168 (1992).
                  molecules.                                     [18] S.M. Finnigan, J.A. Howell:  Trans. IChemE,  Part A
                                                                     (Chem. Eng. Res. Des.), 70, 527–536 (1992).
                                                                 [19] E. Iritani, T. Watanabe and T. Murase: Kagaku Kogaku
                                   References                        Ronbunshu, 17, 206–209 (1991).
                                                                 [20] E. Iritani, T. Watanabe and T. Murase: J. Membr. Sci.,
                   [1] P.H. Hermans, H.L. Bredée: J. Soc. Chem. Ind., 55T,  69, 87–97 (1992).
                      1–4 (1936).                                [21] H. Yukawa, K. Kobayashi, Y. Tsukui, S. Yamano and
                   [2] H.P. Grace: AIChE J., 2, 307–336 (1956).      M. Iwata: J. Chem. Eng. Jpn., 9, 396–401 (1976).
                   [3] E. Iritani,  Y. Mukai,  Y.  Tanaka and  T. Murase:  [22] E. Iritani, K. Ohashi and T. Murase:  J. Chem. Eng.
                      J. Membr. Sci., 103, 181–191 (1995).           Jpn., 25, 383–388 (1992).
                   [4] B.F. Ruth, G.H. Montillon and R.E. Montanna: Ind.  [23] E. Iritani,  Y. Mukai, N. Katagiri and  T. Hirano:
                      Eng. Chem., 25, 153–161 (1933).                Kagaku Kogaku Ronbunshu, 30, 353–359 (2004).
                   [5] E.  Iritani, Y. Toyoda  and T.  Murase:  J. Chem. Eng.  [24] E. Iritani, S. Akatsuka and T. Murase: Kagaku Kogaku
                      Jpn., 30, 614–619 (1997).                      Ronbunshu, 23, 224–229 (1997).





















                                                                                                        417
   438   439   440   441   442   443   444   445   446   447   448