Page 443 - Book Hosokawa Nanoparticle Technology Handbook
P. 443
7.4 REMOVAL OF NANOPARTICLES FUNDAMENTALS
treatments exhibits high permeate quality because [6] E. Iritani, S. Nakatsuka, S. Aoki and T. Murase:
the flocs and PAC are easily retained by the UF J. Chem. Eng. Jpn., 24, 177–183 (1991).
membrane. [7] S. Kimura, S. Sourirajan: AIChE J., 13, 497–503 (1967).
[8] J. Murkes, C.G. Carlsson: Crossflow filtration:
7.4.3.4 Ultracentrifugal sedimentation Theory and practice, Wiley, NY (1988).
In ultracentrifugal sedimentation, ultracentrifugal [9] T. Toda: in Encyclopedia of Fluid Mechanics: Slurry
force field of several tens of thousands of revolutions Flow Technology, N.P. Cheremisinoff (Ed.), Gulf
per minute is applied to a rotor. In recent years, ultra- Publishing, Houston, TX, p. 1149 (1985).
centrifugal sedimentation is employed for concen- [10] B. Culkin, A.D. Armando: Filtr. Sep., 29, 376–378
trating dilute protein solutions and for separating (1992).
proteins and other large biological molecules from [11] T. Murase, E. Iritani, P. Chidpong, K. Yagishita,
low-molecular-weight solutes or from much larger K. Yoshida, T. Sugiyama and M. Shirato: Kagaku
particles. Fig. 7.4.12 shows the results for ultracen- Kogaku Ronbunshu, 14, 135–140 (1988).
trifugal sedimentation of an aqueous solution of the
mixtures of BSA and egg white lysozyme (pI 11.0, [12] W. Tobler: Filtr. Sep., 19, 329–332 (1982).
MW 14,300) measured using Schlieren optics in an [13] T. Murase, E. Iritani, P. Chidpong, K. Kano, K. Atsumi
analytical ultracentrifuge [24]. The angular accelera- and M. Shirato: Kagaku Kogaku Ronbunshu, 15,
tion of the rotor is 5,445 rad/s. The symbol r and 630–637 (1989).
i
r in the figure represent the distances from the cen- [14] K.-Y. Chung, R. Bates and G. Belfort: J. Membr. Sci.,
i0
ter of rotation to the sedimentation boundary at time 81, 139–150 (1993).
and , respectively. The electrical nature of macro- [15] V. Gekas, B. Hallström: Desalination, 77, 195–218
0
molecules plays a significant role in determining the (1990).
sedimentation behavior in ultracentrifugation of [16] T. Murase, E. Iritani, P. Chidpong and K. Kano:
binary protein mixtures. In the pH range where both Kagaku Kogaku Ronbunshu, 15, 1179–1186 (1989).
protein molecules were electropositive, the mole-
cules sediment independently due to the electrostatic [17] V.G.J. Rodgers, R.E. Sparks: J. Membr. Sci., 68,
repulsive force acting between BSA and lysozyme 149–168 (1992).
molecules. [18] S.M. Finnigan, J.A. Howell: Trans. IChemE, Part A
(Chem. Eng. Res. Des.), 70, 527–536 (1992).
[19] E. Iritani, T. Watanabe and T. Murase: Kagaku Kogaku
References Ronbunshu, 17, 206–209 (1991).
[20] E. Iritani, T. Watanabe and T. Murase: J. Membr. Sci.,
[1] P.H. Hermans, H.L. Bredée: J. Soc. Chem. Ind., 55T, 69, 87–97 (1992).
1–4 (1936). [21] H. Yukawa, K. Kobayashi, Y. Tsukui, S. Yamano and
[2] H.P. Grace: AIChE J., 2, 307–336 (1956). M. Iwata: J. Chem. Eng. Jpn., 9, 396–401 (1976).
[3] E. Iritani, Y. Mukai, Y. Tanaka and T. Murase: [22] E. Iritani, K. Ohashi and T. Murase: J. Chem. Eng.
J. Membr. Sci., 103, 181–191 (1995). Jpn., 25, 383–388 (1992).
[4] B.F. Ruth, G.H. Montillon and R.E. Montanna: Ind. [23] E. Iritani, Y. Mukai, N. Katagiri and T. Hirano:
Eng. Chem., 25, 153–161 (1933). Kagaku Kogaku Ronbunshu, 30, 353–359 (2004).
[5] E. Iritani, Y. Toyoda and T. Murase: J. Chem. Eng. [24] E. Iritani, S. Akatsuka and T. Murase: Kagaku Kogaku
Jpn., 30, 614–619 (1997). Ronbunshu, 23, 224–229 (1997).
417

