Page 54 - Book Hosokawa Nanoparticle Technology Handbook
P. 54
1.8 CRYSTAL STRUCTURE FUNDAMENTALS
Tetragonal <211>
60
Intensity [a.u.] 40 Tetragonal <112>
Cubic <211>
20
0 D+l(D) = Particle Diameter
54 55 56 57 58 59
2 [deg.]
XRD Pattern of Lead Titanate nano particle
Figure 1.8.2
Surface relaxation model.
500
Pb(Zr X ,Ti 1-X )O 3
450 X = 0.50 0 0 0 0 0 0 2500 * Solid State Commun. 7 7,139, 1969
X=0.4
X = 0.40
Dielectric Constant 350 X = 0.00 0 0 0 1500 ε a
X=0.3
X = 0.30
B
6
** Phys. Rev.B6,3322,1972
400
2000
X=0.0
300
ε
1000
250
200 Dielectric Constant 60
150 40
fir
ε a = 1500 * ε c
100 20
fir
ε c = 38 ± 16 *
0 10 20 30 40 50
0
Particle Diameter (nm)
30 40 50 60 70 80 90 100 110
Particle Diameter (nm)
Crytical Size
bulk
500 K.Ishikawa et al. 120
480
Transition temperature (°C) 420 X = 0.00 Temperature 80 This Work
460
440
100
400
380
360
340
60
320
300
40
280
X = 0.30
260
240
X = 0.50
220
72 [8] 1555(1989)
72
200
180 X = 0.40 20 0 K.Uchinoet. al. J. Am. Ceram. Soc.,
0 50 100 0 20 40 60 80 100 120 140 160 180 200
Particle Diameter (nm) Particle Diameter (nm)
Figure 1.8.3 Figure 1.8.4
Size effect for lead zirconate titanate nanoparticles. Size effect for barium titanate nanoparticles. (a) Particle
(a) Particle size dependence for dielectric constant of PZT size dependence for dielectric constant of BT
nanoparticles calculated by LST relation. (b) Particle size nanoparticles calculated by LST relation. (b) Particle size
dependence for Curie temperature of PZT nanoparticles. dependence for Curie temperature of BT nanoparticles.
31