Page 543 - Book Hosokawa Nanoparticle Technology Handbook
P. 543

24 CLOSELY PACKED COLLOIDAL CRYSTAL                                           APPLICATIONS
                  inorganic nanoparticles with fair magnetic properties  [19] V.A. Davis, L.M. Ericson,  A. Nicholas, G. Parra-
                  and LCs with good electric response will make them  Vasquez, H. Fan, Y. Wang, V. Prieto, J.A. Longoria,
                  one of the most advanced functional materials with  S. Ramesh, R.K. Saini, C. Kittrell,  W.E. Billups,
                  excellent multi-responsive performance such as active  W.W. Adams, R.H. Hauge, R.E. Smalley and
                  devices.                                           M. Pasquali: Macromolecules, 37, 154 (2004).
                                                                 [20] W. Song, I.A. Kinloch and A.H. Windle: Science, 302,
                                                                     1363 (2003).
                                   References
                                                                 [21] M. Sawamura, K. Kawai, Y. Matsuo, K. Kanie, T. Kato
                   [1] Ekisho Binran, Ekisho Binran Henshuu Iinkai (Eds.),  and E. Nakamura: Nature, 419, 702 (2002).
                      Maruzen, Tokyo (2000).                     [22] J. Araki, M. Wada, S. Kuga and T. Okano: Langmuir,
                   [2] Ekisho no Kagaku, Japan Chemical Society (Eds.),  16, 2413 (2000).
                      Japan Scientific Societies Press, Tokyo (1994).  [23] S.-W. Lee, C. Mao, C.E. Flynn and A.M. Belcher:
                   [3] Ekisho Zairyo, N. Kusabayashi (Ed.), Kodan-shya  Science, 296, 892 (2002).
                      Scientific, Tokyo (1991).                  [24] K. Kanie, T. Sugimoto: J. Am. Chem. Soc., 125, 10518
                   [4] P.J. Collings, M. Hird:  Introduction to Liquid  (2003).
                      Crystals, Taylor & Francis, London (1997).  [25] K. Kanie,  A. Muramatsu:  J.  Am. Chem. Soc.,  127,
                   [5] http://liqcryst.chemie.uni-hamburg.de/en/lolas.php.  11578 (2005).
                   [6] Q. Majorana: Phys. Z., 4, 145 (1902).     [26] T. Sugimoto:  Monodispersed Particles, Elsevier,
                   [7] H. Diesselhorst, H. Freundlich: Phys. Z., 16, 419 (1915).  Amsterdam (2001).
                   [8] H. Freundlich: Z. Elektrochem., 22, 27 (1916).  [27] T. Sugimoto, X. Zhou and A. Muramatsu: J. Colloid
                   [9] K. Kanie, T. Sugimoto: in A New Phase on Organic/  Interface Sci., 259, 53 (2003).
                      Inorganic Nanocomposite Materials, NTS, pp. 175–  [28] K. Kanie, T. Sugimoto:  Chem. Commun., 2004(14)
                      188, Tokyo (2004).                             1584 (2004).
                  [10] P. Davidson, P. Batail, J.C.P. Gabriel, J. Livage,  [29] T. Sugimoto, M.M. Khan, A. Muramatsu and H. Itoh:
                      C. Sanchez and C. Bourgaux: Prog. Polym. Sci., 22,  J. Colloids Surf. A, 79, 233 (1993).
                      913 (1997).                                [30] T. Sugimoto, Y. Wang: J. Colloid Interface Sci., 207,
                  [11] A.S. Sonin: Colloid J., 60, 129 (1998).       137 (1998).
                  [12] A.S. Sonin: J. Mater. Chem., 8, 2557 (1998).  [31] H. Itoh, T. Sugimoto: J. Colloid Interface Sci., 265,
                  [13] J.-C.P. Gabriel, P. Davidson: Adv. Mater., 12, 9 (2000).  283 (2003).
                  [14] J. Sayettat, L.M. Bull, J.-C.P. Gabriel, S. Jobic,  [32] T. Sugimoto, A. Muramatsu, J. Colloid Interface Sci.,
                      F. Camerel,  A.-M. Marie, M. Fourmigué, P. Batail,  184, 626 (1996).
                      R. Brec and R.-L. Inglebert: Angew. Chem. Int. Ed.,  [33] M. Ozaki, S. Kratohvil and E. Matijevic: J. Colloid
                      37, 1711 (1998).                               Interface Sci., 102, 146 (1984).
                  [15] F. Camerel, M. Antonietti and C.F.J. Faul: Chem. Eur.  [34] N. Kanayama, O.  Tsutsumi,  A. Kanazawa and
                      J., 9, 2160 (2003).                            T. Ikeda: Chem. Commun., (24) 2640 (2001).
                  [16] N.R. Jana: Angew. Chem. Int. Ed., 43, 1536 (2004).  [35] H.  Yoshikawa, K. Maeda,  Y. Shiraishi, J. Xu,
                  [17] Z. Dogic, S. Fraden: Langmuir, 16, 7820 (2000).  H. Shiraki, N.  Toshima and S. Kobayashi:  Jpn.
                  [18] S.M.  Yu,  V.P. Conticello, G. Zhang, C. Kayser,   J. Appl. Phys., 41, L1315 (2002).
                      M.J. Fournier, T.L. Mason and D.A. Tirrell: Nature,  [36] L. Cseh, G.H. Mehl: J. Am. Chem. Soc., 128, 13376
                      389, 167 (1997).                               (2006).



                            APPLICATION 24
                   24       CLOSELY PACKED COLLOIDAL CRYSTAL ASSEMBLED WITH NANOPARTICLES AND
                            ITS APPLICATION FOR SMART MATERIALS WITH TUNABLE STRUCTURAL COLOR



                  Opal, colloidal crystal, is three-dimensionally and  mystery of the play of rainbow color in 1960s. They
                  closely packed monodispersed silica particles of a few  explained that the mechanism of the iridescent color
                  100 nm. Opals have been used in gemstone for a long  in opal is caused by Bragg diffraction of visible light
                  time because they show iridescent palette described as  from the periodic array of silica particles, i.e. a kind
                  the play of rainbow color. Sanders et al. revealed the  of structural color [1]. Afterward, artificial opals were

                                                                                                        515
   538   539   540   541   542   543   544   545   546   547   548