Page 214 - Neural Network Modeling and Identification of Dynamical Systems
P. 214

6.2 SEMIEMPIRICAL MODELING OF LONGITUDINAL SHORT-PERIOD MOTION FOR A MANEUVERABLE AIRCRAFT  205

































                          FIGURE 6.5 Semiempirical (gray box) ANN model of the longitudinal angular motion of the aircraft (based on Euler
                          difference scheme).

                          TABLE 6.1 Simulation error on the training set (polyharmonic signal).
                          Problem                Point mode                           Monotonous mode
                                                 RMSE α             RMSE q            RMSE α              RMSE q
                          Adjusting C L          1.02 · 10 −3       1.24 · 10 −4      1.02 · 10 −3        1.24 · 10 −4
                          Learning C L           1.02 · 10 −3       1.23 · 10 −4      1.02 · 10 −3        1.24 · 10 −4
                          Learning C L , C m     1.02 · 10 −3       1.19 · 10 −4      1.02 · 10 −3        1.27 · 10 −4
                          NARX simulation        1.85 · 10 −3       3.12 · 10 −3      1.12 · 10 −3        7.36 · 10 −4

                          TABLE 6.2 Simulation error on the test set (polyharmonic signal).
                          Problem                Point mode                           Monotonous mode
                                                 RMSE α             RMSE q            RMSE α              RMSE q
                          Adjusting C L          1.02 · 10 −3       1.59 · 10 −4      1.02 · 10 −3        1.17 · 10 −4
                          Learning C L           1.02 · 10 −3       1.59 · 10 −4      1.02 · 10 −3        1.17 · 10 −4
                          Learning C L , C m     1.02 · 10 −3       1.32 · 10 −4      1.02 · 10 −3        1.59 · 10 −4
                          NARX simulation        2.32 · 10 −2       4.79 · 10 −2      3.16 · 10 −2        5.14 · 10 −2


                          that the curves on the graphs practically coin-  timate of the model accuracy on the training
                          cide. Quantitative estimates of the accuracy for  set) and Table 6.2 (estimate of the generalization
                          the obtained models are given in Table 6.1 (es-  properties for the ANN model), along with the
   209   210   211   212   213   214   215   216   217   218   219