Page 218 - Neural Network Modeling and Identification of Dynamical Systems
P. 218

6.3 SEMIEMPIRICAL MODELING OF AIRCRAFT THREE-AXIS ROTATIONAL MOTION  209
                          an aircraft, they can be easily estimated using  relative damping coefficients for the actuators of
                          the appropriate ANN modules obtained during  the controlled stabilizer, rudder, and ailerons; D,
                                                                                                          ¯
                                                                                                        ¯
                          the generation of a semiempirical ANN model  L, Y are the drag, lift, and side forces; L, M, N are
                                                                                                             ¯
                          (see also the end of the previous section).  the roll, pitch, and yaw moments; m is the mass
                            The initial theoretical model of the total an-  of the aircraft, kg.
                          gular motion of the aircraft, used for the devel-  The coefficients c 1 ,...,c 9 in (6.6) are defined
                          opment of the semiempirical ANN model, is a  as follows:
                          system of ODEs, traditional for flight dynamics                  2
                                                                               c 0 = I x I z − I ,
                          of aircraft [13–19]. This model has the following              xz
                                                                                                2
                          form:                                                c 1 =[(I y − I z )I z − I ]/c 0 ,
                                                                                               xz
                               ⎧                                               c 2 =[(I x − I y + I z )I xz ]/c 0 ,
                                                         ¯
                                                   ¯
                                 ˙ p = (c 1 r + c 2 p)q + c 3 L + c 4 N,
                               ⎪
                               ⎨
                                              2    2                           c 3 = I z /c 0 ,
                                                         ¯
                                 ˙ q = c 5 pr − c 6 (p − r ) + c 7 M,  (6.6)
                               ⎪                                               c 4 = I xz /c 0 ,
                               ⎩
                                                         ¯
                                                   ¯
                                 ˙ r = (c 8 p − c 2 r)q + c 4 L + c 9 N,
                                                                               c 5 = (I z − I x )/I y ,
                             ⎧
                                ˙
                             ⎪ φ = p + q tanθ sinφ + r tanθ cosφ,              c 6 = I xz /I y ,
                             ⎪
                             ⎪
                             ⎨
                                ˙ θ = q cosφ − r sinφ,                         c 7 = 1/I y ,
                                                                (6.7)
                             ⎪                                                                  2
                             ⎪      sinφ    cosφ                               c 8 =[I x (I x − I y ) + I ]/c 0 ,
                               ψ = q
                             ⎩ ˙         + r     ,                                              xz
                             ⎪
                                    cosθ    cosθ                               c 9 = I x /c 0 ,
                            ⎧
                              ˙ α = q − (p cosα + r sinα)tanβ
                            ⎪
                            ⎪                                          where I x , I y , I z are moments of inertia of the
                            ⎪
                            ⎪          1
                            ⎨
                                 +         (−L + mg 3 ),               aircraft with respect to the axial, lateral, and nor-
                                    mV cosβ                     (6.8)               2
                            ⎪                                          mal axes, kg·m ; I xz , I xy , I yz are centrifugal mo-
                            ⎪
                            ⎪                     1                                                   2
                            ⎪                                          ments of inertia of the aircraft, kg·m .
                            ⎩ ˙
                              β = p sinα − r cosα +  (Y + mg 2 ),
                                                 mV                      The aerodynamic forces D, L, Y in (6.7)and
                                                                                         ¯
                                 ⎧                                     the moments L, M, N in (6.6) are defined by re-
                                                                                   ¯
                                                                                      ¯
                                     2
                                                ˙
                                 ⎪ T ¨ δ e =−2T e ζ e δ e − δ e + δ act ,
                                 ⎪ e                     e
                                 ⎨                                     lationships of the following form:
                                     2                   act
                                      δ
                                                ˙
                                   T ¨ =−2T a ζ a δ a − δ a + δ a  ,  (6.9)
                                    a a
                                 ⎪                                      ⎧       ¯            ¯       ¯
                                 ⎪   2                   act            ⎪ D =−X cosα cosβ − Y sinβ − Z sinα cosβ,
                                 ⎩              ˙
                                   T ¨ δ r =−2T r ζ r δ r − δ r + δ  .  ⎨
                                    r                    r
                                                                                             ¯
                                                                           Y =−X cosα sinβ + Y cosβ − Z sinα sinβ,
                                                                                                     ¯
                                                                                ¯
                            The following notation is used for this model:  ⎪  L = X sinα − Z cosα,
                                                                        ⎩
                                                                                       ¯
                                                                               ¯
                          p, r, q are the roll, yaw, and pitch angular ve-                                  (6.10)
                          locities, deg/sec; φ, ψ, θ are the roll, yaw, and
                          pitch angles, deg; α, β are the angles of attack  ⎧  ¯
                                                                            ⎪ X = q p SC x (α,β,δ e ,q),
                          and sideslip, deg; δ e , δ r , δ a are the deflection  ⎨
                                                                               ¯
                                                                              Y = q p SC y (α,β,δ r ,δ a ,p,r),  (6.11)
                          angles of the controlled stabilizer, rudder, and  ⎪
                                                                            ⎩  ¯
                                             ˙
                                          ˙
                          ailerons, deg; δ e , δ r , δ a are the angular veloci-  Z = q p SC z (α,β,δ e ,q),
                                       ˙
                          ties of the deflection of the controlled stabilizer,  ⎧  ¯
                          rudder, and ailerons, deg/sec; V is the airspeed,  ⎪ L = q p SbC l (α,β,δ e ,δ r ,δ a ,p,r),
                                                                          ⎨
                                                                             ¯
                          m/sec; δ act , δ r act , δ a act  are the command signals  M = q p S ¯cC m (α,β,δ e ,q),  (6.12)
                                  e
                          to the actuators of the controlled stabilizer, rud-  ⎪  N = q p SbC n (α,β,δ e ,δ r ,δ a ,p,r).
                                                                          ⎩
                                                                             ¯
                          der, and ailerons, deg; T e , T r , T a are the time
                          constants for the actuators of the controlled sta-  The variables g 1 , g 2 , g 3 required in (6.8)are
                          bilizer, rudder, and ailerons, sec; ζ e , ζ r , ζ a are the  the projections of the acceleration of gravity on
   213   214   215   216   217   218   219   220   221   222   223