Page 208 - Numerical Analysis Using MATLAB and Excel
P. 208

Exercises

               5.13 Exercises

               Solve the following ODEs by any method and verify your answers with MATLAB.

                    2
                  d y    dy
               1. -------- + 4------ +  3y =  t –  1
                   dt 2   dt

                    2
                  d y    dy            t –
               2. -------- + 4------ +  3y =  4e
                   dt 2   dt
                    2
                         dy
                  d y
                                                           -- cos(
               3. -------- + 2------ +  y =  cos 2 t  Hint: Use  cos 2 t =  1 -  2t +  1 )
                   dt 2   dt                               2
                    2
                   d y
               4. -------- +  y =  sec t
                   dt 2
               5 Express the integro−differential equation below as a  matrix of state equations where
                  k k  and k,  1  2 ,  3  are constants.


                                          dv 2   dv            t
                                                                 d
                                          -------- +  k ------ +  k v +  k 1 ∫  vt =  sin 3t +  cos 3t
                                                 3
                                                       2
                                          dt 2    dt           0
               6. Express the matrix of the state equations below as a single differential equation, and let
                  xy() =  yt() .
                                           x · 1    0   1   0   0    x 1    0
                                           x · 2  =  0  0   1   0  ⋅  x 2  +  0  ut()
                                           x · 3    0   0   0   1    x 3    0

                                           x · 4   – 1 – 2 – 3 – 4   x 4    1
               7. Compute the eigenvalues of the matrices  ,  , and   below.
                                                          AB
                                                                     C
                                                                             0    1    0
                                   A =   1   2      B =    a0         C =    0    0    1
                                         3 – 1             a –  b
                                                                            – 6 – 11 – 6

                  Hint: One of the eigenvalues of matrix C is  1–  .











               Numerical Analysis Using MATLAB® and Excel®, Third Edition                              5−47

               Copyright © Orchard Publications
   203   204   205   206   207   208   209   210   211   212   213