Page 264 - Numerical Analysis Using MATLAB and Excel
P. 264

Taylor and Maclaurin Series


                                                            i'' ()     i''' ()
                                                                           0
                                                                0
                                                                   2
                                                              D
                                                                         D
                                                                              3
                                 i (  D  v )  D  =  i () + i' ()v +  ---------------v +  ----------------v +  …  (6.135)
                                              0
                                                     0
                                                         D
                                                                              D
                                                   D
                                            D
                                                                   D
                                                                         3!
                                                              2!
                The first term i ()  on the right side of (6.135) is found by letting v D  =  0  in (6.134). Then,
                                 0
                               D
                                                     i () =   I D                                    (6.136)
                                                        0
                                                      D
                To compute the second and third terms of (6.135), we must find the first and second derivatives
                of (6.134). These are:
                                           d        1       v D  ⁄  nV T         1
                                i' (  D  v )  D  =  ---------i D  =  ---------- I e⋅  D    and  i' () =  ---------- I ⋅  D  (6.137)
                                                                           0
                                                                         D
                                                   nV
                                          dv
                                                                                nV
                                                                                   T
                                            D
                                                      T
                                          2
                                                   1
                                                                                  1
                                        d
                             i'' (  D  v )  D  =  -------------i D  =  ------------- I e⋅  D  v D  ⁄  nV T   and  i'' () =  ------------- I ⋅  D  (6.138)
                                                                           0
                                                                         D
                                                   2
                                                                                 2
                                         2
                                       d v D      n V T 2                       n V T 2
                Then, by substitution of (6.136), (6.137), and (6.138) into (6.135) we get
                                                    ⎛    1        1         ⎞
                                                                       2
                                        i (  D  v )  D  =  I ⎜  D  1 +  ----------v +  -------------v +  …⎟  (6.139)
                                                                    2 D
                                                             D
                                                                  2
                                                    ⎝   nV T    n V T       ⎠




















               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             6−47
               Copyright © Orchard Publications
   259   260   261   262   263   264   265   266   267   268   269