Page 271 - Numerical Analysis Using MATLAB and Excel
P. 271

Chapter 6  Fourier, Taylor, and Maclaurin Series


                  Therefore,

                              1    4A ⎛       1        1         1          ⎞    A   4A   ∞   1
                       ft() =  --a –  ------- cos +  -- cos 3t +  ------ cos 5t +  ------ cos 7t +  … =  ---- –  -------  ∑  ----- cos nt
                              -
                                           t
                                              -
                              2  0  π 2 ⎝     9       25        49          ⎠    2   π        n 2
                                                                                        n =  odd
                2.
                                                       ft()   2A
                                                              π
                                                        A     -------t
                                                                                          ωt
                                                                 ⁄
                                                                            ⁄
                                                            0  π 2    π   3π 2   π
                  This is an even function; therefore, the series consists of cosine terms only. There is no half−
                   wave symmetry and the average (DC   component) is not zero.

                                                                                         ⁄
                                                              ⁄
                                                                ) [
                                      1       Area     2 ×  (  A 2 ⋅  (  π  2 ⁄ )  ]  +  Aπ  3A (  π 2 ) ⋅  3A
                                       -
                           Average =  --a =  ----------------- =  ---------------------------------------------------------------- =  --------------------------- =  -------
                                      2  0   Period              2π                   2π        4
                                                   ⁄
                                              2  π 2 2A           2  π
                                         a =  --- ∫  -------tcos nt t +  --- ∫  Acos  nt t   (1)
                                                             d
                                                                              d
                                          n
                                              π
                                                     π
                                                                 π
                                                                     ⁄
                   and with                      0                  π 2
                                                  1
                                    ∫ xcos ax x =  ----- cos ax +  x -  ax =  ----- cos(  1  ax +  axsin ax )
                                                            -- sin
                                            d
                                                  a 2       a         a 2
                   (1) simplifies to
                                                                  ⁄
                                                                 π 2
                                        4A 1                          2A      π
                                   a =  ------- ----- cos(  nt +  ntsin nt )  +  ------- sin nt  ⁄
                                    n
                                         π 2  n 2                     nπ      π 2
                                                                 0
                                         4A  ⎛   nπ   nπ   nπ       ⎞   2A ⎛          nπ⎞
                                      =  ----------- cos ------ +  ------ sin ------ – 1 0 +  ------- sin nπ –  sin ------ ⎠
                                                                  –
                                                                        nπ ⎝
                                         2 2⎝
                                                                    ⎠
                                        n π       2   2     2                          2
                   and since sin ntπ =  0  for all integer  , n
                                     4A     nπ   2A    nπ   4A    2A    nπ     4A  ⎛   nπ    ⎞
                               a =  ----------- cos ------ +  ------- sin ------ –  ----------- –  -------sin ------ =  ----------- cos ------ –  1 ⎠
                                                                               2 2⎝
                                n
                                      2 2
                                                             2 2
                                    n π      2   nπ     2   n π   nπ     2    n π      2
                                            ------- 0 –(
                                                     )
                                                                                        )
                                                                       ,
                             for n =  1  a =,  1  4A  1 =  – 4A ,     2 a =   --------- –(  4A  1 1 =  – 2A
                                                          -------  for n =
                                                                                      –
                                                                                             -------
                                                                          2
                                             π 2          π 2                 4π 2           π 2
                                              4A            4A                  – 4A
                                                       )
                                                               ,
                              for n =  3  a =,  3  --------- 0 –(  1 =  – ---------  for n =  4 a =,  4  ----------- 11–(  )  =  0
                                                                                 2 2
                                              9π 2         9π 2                 7 π
                   We observe that the fourth harmonic and all its multiples are zero. Therefore,
               6−54                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   266   267   268   269   270   271   272   273   274   275   276