Page 275 - Numerical Analysis Using MATLAB and Excel
P. 275

Chapter 6  Fourier, Taylor, and Maclaurin Series


                                             1
                                                                                  ⎞
                                                             ⎞
                                                      -------t –
                                      C =   ------  ∫ – 0 π ⎛  ⎝  – 2A  1 e – jnt  t d +  ∫ 0 π ⎛  ⎝  2A  1 e – jnt  t d
                                                                           -------t –
                                                                                  ⎠
                                                             ⎠
                                            2π
                                                                           π
                                        n
                                                       π
                   Integrating and rearranging terms we get
                                    1    4A    4A ⎛    e  jnπ – e – jnπ  e  jnπ  +  e – jnπ  ⎞  2A e  jnπ –  e – jnπ
                                                      ⋅
                                                                                      ⋅
                             C =   ------ –  --------- +  --------- nπ ---------------------------- +  ----------------------------  ⎠  –  ------- ----------------------------
                                               2 ⎝
                               n
                                   2π
                                                                                   n
                                                                                           j2
                                                           j2
                                          2
                                                                        2
                                              n π
                                         n π
                                     4A  ⎛                       nπ      ⎞
                                 =  -------------- – 1 + nπsin nπ +  cos nπ –  ------ sin nπ
                                      2 2⎝
                                   2n π                           2      ⎠
                   and since sin nπ =  0  for all integer  ,
                                                     n
                                                            2A
                                                                       –
                                                     C =   ----------- cos(  nπ 1 )
                                                       n
                                                            2 2
                                                           n π
                                                                                   4A
                                                                                  –
                   For n =  even , C =  0  and for n =  odd , cos nπ =  – 1  , and C =  -----------
                                                                              n
                                   n
                                                                                   2 2
                                                                                  n π
                   Also, by inspection, the DC  component C =   0 . Then,
                                                           0
                                               4A ⎛     1 – j3ωt  – jωt  jωt  1 j3ωt   ⎞
                                                        -
                                        ft() =  – ------- … +  --e  +  e  +  e  +  ---e  + … ⎠
                                                 2 ⎝
                                                π       9                    9
                   The coefficients of the terms  e – j3ωt  and  e – jωt  are positive because all coefficients of  C n  are
                   real. This is to be expected since ft()  is an even function. It also has half−wave symmetry and
                   thus C =  0  for n =  even  as we’ve found.
                         n
                7.
                                                                              n ()
                                                                            f   0 ()
                                         fx() =  f0() + f' 0()x +  f'' 0() 2  … +  -----------------x n
                                                              ------------x +
                                                               2!             n!
                   a. fx() =  e – x , f0() =  , 1 f' x() =  e –  – x , f' 0() =  –  , 1 f'' x() =  e – x , f'' 0() =  , 1  f''' x() =  e –  – x  ,
                      f''' 0() =  – 1 , and so on. Therefore,
                                                                x 2  x 3
                                                  f x() =  1x +  ----- –  ----- +  …
                                                           –
                                                  n
                                                                     3!
                                                                2!
                      MATLAB displays the same result.
                      x=sym('x'); fn=taylor(exp(−x)); pretty(fn)
                                    2        3         4          5
                       1 - x + 1/2 x  - 1/6 x  + 1/24 x  - 1/120 x
               6−58                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   270   271   272   273   274   275   276   277   278   279   280