Page 277 - Numerical Analysis Using MATLAB and Excel
P. 277

Chapter 6  Fourier, Taylor, and Maclaurin Series


                                                                 ⁄
                                                             (
                                                                           ⁄
                                                                   )
                       f'' x() =  – sin x  ,        f'' a() =  f'' – π 4 =  22 ,             f''' x() =  – cos x  ,
                                 (
                                     ⁄
                                                ⁄
                                       )
                       f''' a() =  f''' – π 4 =  –  22  , and so on. Therefore,
                                                                                  ⁄
                                             ⁄
                                                               ⁄
                                    ⁄
                                                                                     )
                                                                  (
                                                      ⁄
                                                        )
                                               )
                                                (
                                                                        ⁄
                                                                 )
                                                                                            ⁄
                                                                                      (
                        f x() =  –  22 +  (  22 x +  π 4 +  (  24 x +  π 4 )  2 –  (  212 x +  π 4 )  3  +  …
                         n
                      MATLAB displays the same result.
                      x=sym('x'); y=sin(x); z=taylor(y,4,−pi/4); pretty(z)
                                1/2        1/2                     1/2             2
                         - 1/2 2    + 1/2 2    (x + 1/4 pi) + 1/4 2    (x + 1/4 pi)
                                 1/2             3
                         - 1/12 2    (x + 1/4 pi)
                9.
                                                                  v ⎞
                                                              ⎛
                                                     iv() =  k1 +  ----  1.5
                                                              ⎝   V ⎠
                   The Taylor series for this relation is
                                                           i'' v (  )   2  i''' v ) (   3
                                                                               0
                                                               0
                               iv() =  iv (  0 )  i' v ) ( +  0  (  v –  v )  0  -------------- vv ) ( +  –  0  --------------- vv ) ( +  –  0  +  …
                                                             2!
                                                                             3!
                  Since the voltage   is small, and varies about v =  0 , we expand this relation about v =  0  and
                                    v
                  the series reduces to the Maclaurin series below.
                                             iv() =  i0() +  i' 0()v +  i'' 0() 2  …    (1)
                                                                 ------------v +
                                                                  2!
                   By substitution of v =  0  into the given relation we get
                                                          i0() =  k
                  The first and second derivatives of   are
                                                    i
                                                               ⁄
                                                    3k ⎛   v ⎞  12            3k
                                            i' v() =  ------- 1 +  ----  i' 0() =  -------
                                                    2V ⎝   V ⎠                2V
                                                                ⁄
                                                   3k  ⎛   v ⎞  – 12           3k
                                          i'' v() =  ---------- 1 +  ---- ⎠  i'' 0() =  ----------
                                                     2⎝
                                                  4V       V                  4V  2
                   and by substitution into (1)

                                              3k     3k  2         ⎛     3      3  2     ⎞
                                   iv() =  k +  -------v +  ----------v +  … =  k1 +  -------v +  ----------v +  …
                                              2V    8V 2           ⎝    2V    8V 2       ⎠






               6−60                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   272   273   274   275   276   277   278   279   280   281   282