Page 272 - Numerical Analysis Using MATLAB and Excel
P. 272

Solutions to End−of−Chapter Exercises


                                               3A   4A ⎛       1        1         ⎞
                                                                        -
                                                               -
                                         ft() =  ------- –  ------- cos +  -- cos 2t +  -- cos 3t +  …
                                                            t
                                                4    π 2 ⎝     2        9         ⎠
                3.
                                                            ft()
                                                         A




                                                            0      π       2π       ωt
                   This is neither an even nor an odd function and has no half−wave symmetry; therefore, the
                   series consists of both cosine and sine terms. The average (DC  component) is not zero. Then,


                                                       1   2π     – jnωt
                                                C =   ------  ∫ 0  ft()e  ( d  ωt )
                                                      2π
                                                  n
                   and with ω =  1

                                 1    2π    – jnt   1     π   – jnt     2π  – jnt    A    π  – jnt
                           C =   ------  ∫ 0  ft()e  t d =  ------  ∫ 0  Ae  t d +  ∫ π  0e  t d  =  ------  ∫ 0  e  t d
                                 2π
                                                                                    2π
                                                    2π
                            n
                   The DC  value is
                                                      A   π  0     A   π   A
                                               C =   ------  ∫ 0  e td =  ------t  0  =  ----
                                                 0
                                                     2π
                                                                   2π
                                                                           2
                  For n ≠ 0
                                                            A
                                            A
                                     C =   ------  ∫  π e – jnt  t d =  ---------------e – jnt  π  ------------ 1 –( =  A  e – jnπ )
                                           2π
                                       n
                                                0         – j2nπ    0    j2nπ
                   Recalling that
                                                   e – jnπ  =  cos nπ –  jsin nπ

                   for n =  even , e – jnπ  =  1  and for n =  odd , e – jnπ  =  – 1 . Then,

                                                             A
                                                                      )
                                                 C n =  even  =  ------------ 1 –( j2nπ  1 =  0
                  and
                                                          A                A
                                               C n =  odd  ------------ 1 –[ =  j2nπ  – (  1 ]  )  =  --------
                                                                          jnπ
                  By substitution into the expression


                                  ft() =  … +  C e – j2ωt  +  C e – jωt  +  C +  C e  jωt  +  C e j2ωt  +  …
                                                          –
                                               –
                                                2
                                                                        1
                                                                                2
                                                          1
                                                                   0
                   we find that
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             6−55
               Copyright © Orchard Publications
   267   268   269   270   271   272   273   274   275   276   277