Page 274 - Numerical Analysis Using MATLAB and Excel
P. 274

Solutions to End−of−Chapter Exercises


                                     A    π 2⁄  – jnt   A    – jnt  π 2⁄  A    – jnπ 2  jnπ 2
                                                                                   ⁄
                                                                                           ⁄
                               C =   ------  ∫ – π 2 e  t d =  ---------------e  – π 2  =  --------------- e (  – j2nπ  –  e  )
                                                       j2nπ
                                     2π
                                 n
                                                      –
                                            ⁄
                                                                  ⁄
                                                                    ⁄
                                                                            ⁄
                                                                         –
                                                                          jnπ 2
                                                                 jnπ 2
                                                                        e
                                                                                  A
                                                                      –
                                                             A e
                                                                              ⎞
                                                               ⎛
                                               ⁄
                                                       ⁄
                                   =  ------------ e (  A  jnπ 2 –  e – jnπ 2 )  =  ------ -------------------------------------- =  ------ sin nπ
                                                                                       ------
                                     j2nπ                   nπ ⎝      j2      ⎠   nπ    2
                   and we observe that for n =  even , C =  0
                                                      n
                   For n =  odd , C n  alternates in plus (+) and minus (−) signs, that is,
                                                         A
                                                                     ,,
                                                                         ,
                                                  C =   ------  if  n =  159 …
                                                        nπ
                                                    n
                                                         A
                                                                     ,,
                                                                          ,
                                                 C =   – ------  if  n =  3711 …
                                                   n
                                                        nπ
                   Thus,
                                                         A        ⎛  A   jnωt ⎞
                                                  ft() =  ---- +  ∑  ± ------e
                                                         2        ⎝  nπ     ⎠
                                                             n =  odd
                                                               ,,,
                   where the plus (+) sign is  used with  n =  1 5 9 …  and the minus (−) sign is used with
                              ,
                        ,,
                   n =  3 7 11 …  . We can express ft()  in a more compact form as
                                                     A             (  n – 1 ⁄ A  jnωt
                                                                       )
                                                                        2
                                              ft() =  ---- +  ∑  – (  1 )  ------e
                                                     2                   nπ
                                                         n =  odd
                6.
                                                       ft()             2A    1
                                                                        -------t –
                                                            A            π
                                                        ⁄
                                                     – π 2   π 2
                                                               ⁄
                                              – π           0         π                      ωt
                                                        −A
                   We will find the exponential form coefficients C n  from
                                                           1
                                                    C =   ------  ∫  π  ft()e – jnt  t d
                                                      n
                                                          2π
                   From tables of integrals                    – π
                                                     ∫ xe d x =  e ax   1 )
                                                        ax
                                                                ------- ax –(
                                                                a 2
                   Then,
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             6−57
               Copyright © Orchard Publications
   269   270   271   272   273   274   275   276   277   278   279