Page 467 - Numerical Methods for Chemical Engineering
P. 467

456     9 Fourier analysis



                   are not themselves scattered before they strike the detector. The measured intensity is then
                                                                  N         N

                                                       2
                                                              2
                             I tot r D , t; q = E tot r D , t; q     =|E s (θ)|  e −iϕ j  e iϕ m

                                                                 j=1       m=1
                                      N  N                  N   N

                                    2       i(ϕ m −ϕ j )  2        −i(q·R mj )
                            =|E s (θ)|     e       =|E s (θ)|     e                  (9.111)
                                     j=1 m=1                j=1 m=1
                   The structure factor – the ratio of time-averaged scattered intensity at q  = 0 to that in the
                   decoherent limit q → 0 – is therefore
                                                       7    N  N         8
                                             I tot (q)   1  	 	   −i(q·R mj )
                                   S(q) =            =            e                  (9.112)
                                           I tot (q → 0)   N
                                                           j=1 m=1

                   Applying Fourier analysis

                   We now show that this structure factor is closely related to the Fourier transform of the corre-
                   lation function of the electron density ρ(r). If we know the exact positions {R 1 , R 2 ,..., R N }
                   of each electron (we neglect quantum effects), the density function is merely a sum of Dirac
                   delta functions:
                                                     N

                                              ρ(r) =   δ(r − R j )                   (9.113)
                                                    j=1
                   Let us consider the autocorrelation function of ρ(r),
                                                             1   '
                                                 C ρ,ρ (s) =       ρ(r + s)ρ(r)dr
                                                          (2π) d/2
                                                                  d                  (9.114)
                                                            1   '
                                                      2                  −i(q·s)
                            C ρ,ρ (q) = ρ(q)ρ(−q) =|ρ(q)| =       C ρ,ρ (s)e  ds
                                                         (2π) d/2
                                                                 d

                   Substituting for C ρ,ρ (s) and ρ(r) in the expression for C ρ,ρ (q),
                                   1   ' '             −i(q·s)
                        C ρ,ρ (q) =        ρ(r + s)ρ(r)e   drds
                                  (2π) d
                                        d  d

                                           
  N             
  N
                                   1         	                	             −i(q·s)
                                       ' '
                               =                δ(r + s − R m )  δ(r − R j ) e  drds
                                  (2π) d     m=1               j=1
                                        d  d

                                                                               
                                           N
                                        N
                                   1   	 	    ' '                      −i(q·s)  
                               =     d             δ(r + s − R m )δ(r − R j )e  drds
                                  (2π)
                                       m=1 j=1                                 
                                               d
                                                  d
                                                                                     (9.115)
                   From the Dirac delta functions, the integral is nonzero only if
                                                                                     (9.116)
                                    r = R j  r + s = R m ⇒ s = R m − R j = R mj
   462   463   464   465   466   467   468   469   470   471   472