Page 141 - Numerical methods for chemical engineering
P. 141

Computing extremal eigenvalues                                      127



                                                          [0]
                  coefficients {c 1 , c 2 ,..., c N } to be nonzero. From v , we obtain a sequence of new vectors
                   [1]
                       [2]
                  v , v ,...bythe rule
                                                        Av [k]
                                                [k+1]
                                               v    =                               (3.130)
                                                        Av
                                                          [k]
                  Writing these vectors as linear combinations of eigenvectors, we have

                        Av [0]  = A c 1 w [1]  +· · · + c N w [N]    = c 1 λ 1 w [1]  +· · · + c N λ N w [N]  (3.131)
                  so that
                                 Av [0]  c 1 λ 1 w [1]  + c 2 λ 2 w [2]  + ··· + c N λ N w [N]
                           v [1]  =      =                                          (3.132)
                                 Av                    Av
                                    [0]                  [0]
                  Next,
                                   [1]            [N]      2  [1]         2  [N]
                            A c 1 λ 1 w  +· · · + c N λ N w  c 1 λ w  +· · · + c N λ w
                     Av [1]  =                        =    1              N         (3.133)
                                       Av                         Av
                                         [0]                        [0]
                  so that
                                            2
                                                     2
                                                                   2
                                         c 1 λ w [1]  + c 2 λ w [2]  +· · · + c N λ w [N]
                                   v [2]  =  1       2             N                (3.134)
                                                   Av   × Av
                                                     [1]     [0]
                  or in general,
                                            k
                                                                   k
                                                     k
                                         c 1 λ w [1]  + c 2 λ w [2]  +· · · + c N λ w [N]
                                            1
                                                     2
                                  v [k]  =                         N                (3.135)
                                            k
                                                     k
                                                                   k
                                         c 1 λ w [1]  + c 2 λ w [2]  +· · · + c N λ w
                                                                      [N]
                                            1        2             N
                  Let us assume that the eigenvalues are ordered by decreasing modulus, and that λ 1 is both
                  distinct and has a larger modulus than λ 2 :
                                     |λ 1 | > |λ 2 |≥|λ 3 |≥· · ·≥|λ N−1 |≥|λ N |   (3.136)
                  Note that this is a stricter statement than saying that λ 1 is distinct, as if λ 2 = λ 1 ,λ 1 is
                  distinct, but |λ 2 |=|λ 1 |. If (3.136) holds, as k →∞,
                                                             k

                                     λ    λ    ≥ λ  ≥· · · ≥ λ   ≥ λ                (3.137)
                                       k      k      k               k
                                      1      2    3          N−1     N
                  and for any finite {c 1 , c 2 ,..., c N }, we eventually have
                                                             k



                             c 1 λ  k      c 2 λ  k    ≥ c 3 λ  k    ≥· · · ≥ c N−1 λ  N−1     ≥ c N λ  k    (3.138)

                                              3
                               1
                                                                       N
                                      2
                  Therefore, as k →∞,
                                                        k
                                                     c 1 λ w [1]
                                               v [k]  ≈    1                        (3.139)
                                                        k
                                                     c 1 λ w
                                                        1
                                                          [1]
                                         [k]
                  In this limit, as Av [k]  ≈ λ 1 v ,
                                        λ k ≈ v [k]  · Av [k]  w  [1]  ≈ v [k+1]    (3.140)
                  We have assumed above that c 1  = 0; however, this is not really necessary. In the presence of
                  round-off error, which mixes in some w [1]  component, this algorithm will find λ 1 and w [1]
                  even if initially c 1 were zero.
   136   137   138   139   140   141   142   143   144   145   146