Page 348 - Organic Electronics in Sensors and Biotechnology
P. 348

Organic Electronics in Memories and Sensing Applications   325




                                                       12
                                                       10
                                                       8
                                                       6
                                                       4
                                                       2
                                                       0
                                                     (μA)
                         (a)         (b)                (c)

               FIGURE 8.19  A pressure image of a kiss mark taken by using sensors
               consisting of 16 × 16 sensor cells. (a) The device is pressed with a
               lip-shaped rubber replica, (b) and the pressure image is compared with
               (c) the print on paper. The two bright spots at the bottom of (b) are due to
               a failure of sensors around those two spots (low local resistance of the
               pressure-sensitive rubber). (Scale bar = 1 cm.) (Reproduced with permission
               from Ref. 57. Copyright 2004, PNAS.)


          References
                   1.  J. E. Anthony, M. Heeny, and B. S. Ong, Mater. Res. Bull. 33:698 (2008); J. E.
                   Anthony, Angew. Chem. 47:452 (2008).
                   2.  H. Sirringhaus and M. Ando, Mater. Res. Bull. 33:676 (2008).
                   3.  S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, Angew. Chem.
                   47:4070 (2008).
                   4.  C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J-L. Brédas, P. C. Ewbank,
                   and K. R. Mann, Chem. Mater. 4436:16 (2004).
                   5.  H. Yamada, T. Okujima, and N. Ono, ChemComm. 26:2957 (2008).
                   6.  A. R. Murphy and J. M. J. Fréchet, Chem. Rev. 107:1066 (2007).
                   7.  Th. B. Singh and N. S. Sariciftci, Ann. Rev. Mater. Res. 36:199 (2006).
                   8.  H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard,
                   et al., Nature 401:685 (1999); H. Sirringhaus, R. J. Wilson, R. H. Friend, M.
                   Inbasekaran, and W. Wu, Appl. Phys. Lett. 77:406 (2000).
                   9.  H. Koezuka, A. Tsumara, and T. Ando,  Synth. Met. 18:699 (1987).
                 10.  H. Sirringhaus, N. Tessler, D. S. Thomas, P. J. Brown, and R. H. Friend, in
                   Advances in Solid-State Physics, vol. 39 (Ed. B. Kramer), Vieweg, Wiesbaden,
                   Germany, 1999, pp. 101–110
                 11.  M. S. A. Abdou, F. P. Orfino, Y. Son, and S. Holdcroft, J. Am. Chem. Soc. 119:4518
                   (1997).
                 12.  B. S. Ong, Y. L. Wu, P. Liu, and S. Gardner,  J. Am. Chem. Soc. 126:3378 (2004).
                 13.  M. Heeney, C. Bailey, K. Genevicius, M. Shkunov, D. Sparrow, et al., J. Am.
                   Chem. Soc. 127:1078 (2005).
                 14.  Mcculloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov,
                   D. Sparrowe,  et al., Nature Mater., 5:328 (2006).
                 15.  F. Eder, H. Klauk, M. Halik, U. Zschieschag, G. Schmid, and C. Dehm., Appl.
                   Phys. Lett. 84:2673 (2004).
                 16.  T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, Mater. Res.
                   Soc. Symp. Proc. 771 (Warrendale, PA):L6.5.1 (2003).
                17.  J. E. Anthony, Chem. Rev. 106:5028 (2006).
                 18.  M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo, and T. N. Jackson, J. Am.
                   Chem. Soc. 127:4986 (2005).
                 19.  K. C. Dickey, J. E. Anthony, and Y. L. Loo, Adv. Mater. 18:1721 (2006).
                 20.  T. Anthopoulos, Th. B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil,
                   H. Sitter, M. Cölle, et al., Appl. Phys. Lett. 89:213504 (2006).
   343   344   345   346   347   348   349   350   351   352   353