Page 125 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 125

116                          Harmonic oscillator

                                                        d            2                 2
                                                                              ð
                                                                 e
                                        j1iˆ 2 ÿ1=2  î ÿ    (ð ÿ1=4 ÿî =2 ) ˆ 2 1=2 ÿ1=4 îe ÿî =2
                                                        dî
                             the eigenvector j2i from j1i

                                                d
                                                                 2
                                                                                            2
                                         1           1=2 ÿ1=4  ÿî =2    ÿ1=2 ÿ1=4   2     ÿî =2
                                   j2iˆ    î ÿ     (2  ð    îe     ) ˆ 2   ð    (2î ÿ 1)e
                                         2     dî
                             the eigenvector j3i from j2i
                                                           d
                                                                                    2
                                                                            2
                                                                    ð
                                          j3iˆ 6 ÿ1=2  î ÿ    (2 ÿ1=2 ÿ1=4 (2î ÿ 1)e ÿî =2 )
                                                          dî
                                                                       2
                                                             3
                                                     ð
                                             ˆ 3 ÿ1=2 ÿ1=4 (2î ÿ 3î)e ÿî =2
                             and so forth, inde®nitely. Each of the eigenfunctions obtained by this procedure
                             is normalized.
                               When equation (4.18a) is combined with (4.34a), we have

                                                                         d
                                                  jn ÿ 1iˆ (2n) ÿ1=2  î ‡    jni               (4:36)
                                                                         dî
                             Just as equation (4.35) allows one to go `up the ladder' to obtain jn ‡ 1i from
                             jni, equation (4.36) allows one to go `down the ladder' to obtain jn ÿ 1i from
                             jni. This lowering procedure maintains the normalization of each of the
                             eigenvectors.
                               Another, but completely equivalent, way of determining the series of eigen-
                             functions may be obtained by ®rst noting that equation (4.34b) may be written
                             for the series n ˆ 0, 1, 2, ... as follows

                                                        y
                                                 j1iˆ ^ a j0i
                                                                          y 2
                                                 j2iˆ 2 ÿ1=2 y      ÿ1=2 (^ a ) j0i
                                                           ^ a j1iˆ 2
                                                                            y 3
                                                 j3iˆ 3 ÿ1=2 y        ÿ1=2 (^ a ) j0i
                                                           ^ a j2iˆ (3!)
                                                 .
                                                 . .
                             Obviously, the expression for jni is
                                                                      y n
                                                       jniˆ (n!) ÿ1=2 (^ a ) j0i
                             Substitution of equation (4.18b) for ^ a and (4.31) for the ground-state eigen-
                                                                y
                             vector j0i gives
                                                                         d    n
                                                                                2
                                                       n
                                                              ð
                                               jniˆ (2 n!) ÿ1=2 ÿ1=4  î ÿ    e ÿî =2           (4:37)
                                                                        dî
                             This equation may be somewhat simpli®ed if we note that
   120   121   122   123   124   125   126   127   128   129   130