Page 126 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 126

4.3 Eigenfunctions                        117

                              d      2          d    2     2       2       2    2     2  d    2
                                                       e
                                                                             e
                          î ÿ    e ÿî =2  ˆ  î ÿ   e î =2 ÿî  ˆ îe ÿî =2  ÿ îe î =2 ÿî  ÿ e î =2  e ÿî
                              dî               dî                                       dî
                                              2
                                       ˆÿe   î =2  d  e ÿî  2
                                                dî
                        so that
                                                   n                    n
                                               d     ÿî =2       n î =2  d  ÿî 2
                                                                   2
                                                       2
                                           î ÿ      e     ˆ (ÿ1) e        e               (4:38)
                                               dî                     dî  n
                        Substitution of equation (4.38) into (4.37) gives
                                                                    2
                                                      n
                                                             ð
                                                   n
                                         jniˆ (ÿ1) (2 n!) ÿ1=2 ÿ1=4 î =2  d n  e ÿî  2    (4:39)
                                                                  e
                                                                       dî  n
                                                                                       ^
                                                                                 ^
                        which may be used to obtain the entire set of eigenfunctions of N and H.
                        Eigenfunctions in terms of Hermite polynomials
                        It is customary to express the eigenfunctions for the stationary states of the
                        harmonic oscillator in terms of the Hermite polynomials. The in®nite set of
                        Hermite polynomials H n (î) is de®ned in Appendix D, which also derives many
                        of the properties of those polynomials. In particular, equation (D.3) relates the
                        Hermite polynomial of order n to the nth-order derivative which appears in
                        equation (4.39)
                                                            n î
                                               H n (î) ˆ (ÿ1) e  2 d n  e ÿî 2
                                                                dî n
                        Therefore, we may express the eigenvector jni in terms of the Hermite
                        polynomial H n (î) by the relation
                                                                             2
                                                        n
                                                               ð
                                        jniˆ ö n (î) ˆ (2 n!) ÿ1=2 ÿ1=4  H n (î)e ÿî =2   (4:40)
                          The eigenstates ø n (x) are related to the functions ö n (î) by equation (4.16),
                        so that we have
                                                                 1=4
                                                            mù              2
                                                   n
                                         ø n (x) ˆ (2 n!) ÿ1=2      H n (î)e ÿî =2
                                                            ð"
                                                                                          (4:41)
                                                        1=2
                                                   mù
                                             î ˆ          x
                                                    "
                        For reference, the Hermite polynomials for n ˆ 0to n ˆ 10 are listed in Table
                        4.1. When needed, higher-order Hermite polynomials are most easily obtained
                        from the recurrence relation (D.5). If only a single Hermite polynomial is
                        wanted and the neighboring polynomials are not available, then equation (D.4)
                        may be used.
   121   122   123   124   125   126   127   128   129   130   131