Page 131 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 131
122 Harmonic oscillator
1=2
"
y
hn9jxjni (hn9j^ a jnihn9j^ ajni)
2mù
1=2
" p p
( n 1ä n9,n1 nä n9,nÿ1 )
2mù
so that
r
(n 1)"
hn 1jxjni (4:45a)
2mù
r
n"
hn ÿ 1jxjni (4:45b)
2mù
hn9jxjni 0 for n9 6 n 1, n ÿ 1 (4:45c)
If we replace n by n ÿ 1 in equation (4.45a), we obtain
r
n"
hnjxjn ÿ 1i
2mù
From equation (4.45b) we see that
hn ÿ 1jxjni hnjxjn ÿ 1i
Likewise, we can show that
hn 1jxjni hnjxjn 1i
In general, then, we have
hn9jxjni hnjxjn9i
To ®nd the matrix element hn9j^ pjni, we use equations (4.43b) and (4.44) to
give
1=2
m"ù
y
hn9j^ pjni i hn9j^ a ÿ ^ ajni
2
1=2
m"ù p p
i ( n 1ä n9,n1 ÿ nä n9,nÿ1 )
2
so that
r
(n 1)m"ù
hn 1j^ pjni i (4:46a)
2
r
nm"ù
hn ÿ 1j^ pjniÿi (4:46b)
2
hn9j^ pjni 0 for n9 6 n 1, n ÿ 1 (4:46c)
We can easily show that