Page 131 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 131

122                          Harmonic oscillator
                                                            1=2
                                                       "
                                                                   y
                                         hn9jxjniˆ            (hn9j^ a jni‡hn9j^ ajni)
                                                     2mù
                                                            1=2
                                                       "       p   p 
                                                 ˆ            ( n ‡ 1ä n9,n‡1 ‡  nä n9,nÿ1 )
                                                     2mù
                             so that
                                                           r 
                                                             (n ‡ 1)"
                                              hn ‡ 1jxjniˆ                                    (4:45a)
                                                               2mù
                                                           r 
                                                               n"
                                              hn ÿ 1jxjniˆ                                    (4:45b)
                                                             2mù
                                                 hn9jxjniˆ 0   for  n9 6ˆ n ‡ 1, n ÿ 1        (4:45c)

                             If we replace n by n ÿ 1 in equation (4.45a), we obtain
                                                                    r 
                                                                        n"
                                                       hnjxjn ÿ 1iˆ
                                                                      2mù
                             From equation (4.45b) we see that
                                                     hn ÿ 1jxjniˆ hnjxjn ÿ 1i
                             Likewise, we can show that

                                                     hn ‡ 1jxjniˆ hnjxjn ‡ 1i
                             In general, then, we have

                                                        hn9jxjniˆ hnjxjn9i
                               To ®nd the matrix element hn9j^ pjni, we use equations (4.43b) and (4.44) to
                             give

                                                            1=2
                                                      m"ù
                                                                   y
                                         hn9j^ pjniˆ i        hn9j^ a ÿ ^ ajni
                                                       2
                                                            1=2
                                                      m"ù      p    p 
                                                 ˆ i          ( n ‡ 1ä n9,n‡1 ÿ  nä n9,nÿ1 )
                                                       2
                             so that
                                                            r 
                                                              (n ‡ 1)m"ù
                                             hn ‡ 1j^ pjniˆ i                                 (4:46a)
                                                                   2
                                                              r 
                                                                nm"ù
                                             hn ÿ 1j^ pjniˆÿi                                 (4:46b)
                                                                  2
                                                 hn9j^ pjniˆ 0  for  n9 6ˆ n ‡ 1, n ÿ 1       (4:46c)
                             We can easily show that
   126   127   128   129   130   131   132   133   134   135   136