Page 136 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 136

4.6 Three-dimensional harmonic oscillator          127
                                                                  1=4

                                                                              2
                                          (x) ˆ (2 n x !) ÿ1=2  mù x    (î)e ÿî =2
                                                  n x
                                                             ð"
                                       X n x                         H n x
                                                       1=2

                                                  mù x
                                            î ˆ           x
                                                   "
                        Similarly, the eigenvalues for the differential equations for Y(y) and Z(z) are,
                        respectively
                                                    1
                                            ˆ (n y ‡ )"ù y ,    n y ˆ 0, 1, 2, ...
                                                    2
                                         E n y
                                                    1
                                            ˆ (n z ‡ )"ù z ,   n z ˆ 0, 1, 2, ...
                                         E n z
                                                    2
                        and the corresponding eigenfunctions are
                                                                  1=4

                                                                              2
                                          (y) ˆ (2 n y !) ÿ1=2  mù y    (ç)e ÿç =2
                                                  n y
                                                             ð"
                                       Y n y                         H n y
                                                       1=2

                                                 mù y
                                           ç ˆ            y
                                                   "
                                                                  1=4
                                                                             2
                                          (z) ˆ (2 n z !) ÿ1=2  mù z   (æ)e ÿæ =2
                                                  n z
                                       Z n z                        H n z
                                                            ð"
                                                       1=2

                                                 mù z
                                           æ ˆ           z
                                                   "
                          The energy levels for the three-dimensional harmonic oscillator are, then,
                        given by the sum (equation (4.53))
                                                   1             1             1
                                           ˆ (n x ‡ )"ù x ‡ (n y ‡ )"ù y ‡ (n z ‡ )"ù z   (4:54)
                                                   2             2             2
                                   E n x ,n y ,n z
                        The total wave functions are given by equation (4.52)
                                                                      m    3=4
                                  (x, y, z) ˆ (2  n x ‡n y ‡n z  n x !n y !n z !) ÿ1=2  (ù x ù y ù z ) 1=4
                                                                    ð"
                           ø n x ,n y ,n z
                                                                      2
                                                                           2
                                                                        2
                                                               (æ)e ÿ(î ‡ç ‡æ )=2         (4:55)
                                             3 H n x  (î)H n y  (ç)H n z
                          An isotropic oscillator is one for which the restoring force is independent of
                        the direction of the displacement and depends only on its magnitude. For such
                        an oscillator, the directional force constants are equal to one another
                                                   k x ˆ k y ˆ k z   k
                        and, as a result, the angular frequencies are all the same
                                                  ù x ˆ ù y ˆ ù z   ù
                        In this case, the total energies are
   131   132   133   134   135   136   137   138   139   140   141