Page 133 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 133
124 Harmonic oscillator
2 2 m"ù p
hn 2j^ p jnihnj^ p jn 2iÿ (n 1)(n 2) (4:49a)
2
2
1
hnj^ p jni m"ù(n ) (4:49b)
2
m"ù p
2 2
hn ÿ 2j^ p jnihnj^ p jn ÿ 2iÿ n(n ÿ 1) (4:49c)
2
2
hn9j^ p jni 0, n9 6 n 2, n, n ÿ 2 (4:49d)
k
Following this same procedure using the operators (^ a ^ a) , we can ®nd the
y
k
k
matrix elements of x and of ^ p for any positive integral power k. In Chapters
4
3
9 and 10, we need the matrix elements of x and x . The matrix elements
3
hn9jx jni are as follows:
3=2
" p
3 3
hn 3jx jnihnjx jn 3i (n 1)(n 2)(n 3) (4:50a)
2mù
3=2
(n 1)"
3
3
hn 1jx jnihnjx jn 1i 3 (4:50b)
2mù
3=2
n"
3
3
hn ÿ 1jx jnihnjx jn ÿ 1i 3 (4:50c)
2mù
3=2
" p
3 3
hn ÿ 3jx jnihnjx jn ÿ 3i n(n ÿ 1)(n ÿ 2) (4:50d)
2mù
3
hn9jx jni 0, n9 6 n 1, n 3 (4:50e)
4
The matrix elements hn9jx jni are as follows
2
" p
4 4
hn 4jx jnihnjx jn 4i (n 1)(n 2)(n 3)(n 4)
2mù
(4:51a)
2
1 " p
4 4
hn 2jx jnihnjx jn 2i (2n 3) (n 1)(n 2) (4:51b)
2 mù
2
3 "
4 2 1
hnjx jni n n (4:51c)
2 mù 2
2
1 " p
4 4
hn ÿ 2jx jnihnjx jn ÿ 2i (2n ÿ 1) n(n ÿ 1) (4:51d)
2 mù
2
" p
4 4
hn ÿ 4jx jnihnjx jn ÿ 4i n(n ÿ 1)(n ÿ 2)(n ÿ 3) (4:51e)
2mù
4
hn9jx jni 0, n9 6 n, n 2, n 4 (4:51f)