Page 133 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 133

124                          Harmonic oscillator

                                          2          2             m"ù   p  
                                  hn ‡ 2j^ p jniˆhnj^ p jn ‡ 2iˆÿ           (n ‡ 1)(n ‡ 2)    (4:49a)
                                                                     2
                                          2
                                                          1
                                      hnj^ p jniˆ m"ù(n ‡ )                                   (4:49b)
                                                          2

                                                                   m"ù   p  
                                          2          2
                                  hn ÿ 2j^ p jniˆhnj^ p jn ÿ 2iˆÿ           n(n ÿ 1)          (4:49c)
                                                                     2
                                          2
                                     hn9j^ p jniˆ 0,    n9 6ˆ n ‡ 2, n, n ÿ 2                 (4:49d)
                                                                                     k
                               Following this same procedure using the operators (^ a   ^ a) , we can ®nd the
                                                                               y
                                                k
                                                          k
                             matrix elements of x and of ^ p for any positive integral power k. In Chapters
                                                                               4
                                                                        3
                             9 and 10, we need the matrix elements of x and x . The matrix elements
                                  3
                             hn9jx jni are as follows:
                                                                  3=2
                                                             "      p 
                                     3         3
                             hn ‡ 3jx jniˆhnjx jn ‡ 3iˆ               (n ‡ 1)(n ‡ 2)(n ‡ 3)   (4:50a)
                                                           2mù
                                                                      3=2
                                                             (n ‡ 1)"
                                               3
                                     3
                             hn ‡ 1jx jniˆhnjx jn ‡ 1iˆ 3                                     (4:50b)
                                                              2mù
                                                                   3=2
                                                              n"
                                               3
                                     3
                             hn ÿ 1jx jniˆhnjx jn ÿ 1iˆ 3                                     (4:50c)
                                                             2mù
                                                                  3=2
                                                             "      p 
                                     3         3
                             hn ÿ 3jx jniˆhnjx jn ÿ 3iˆ                n(n ÿ 1)(n ÿ 2)        (4:50d)
                                                           2mù
                                     3
                                hn9jx jniˆ 0,     n9 6ˆ n   1, n   3                          (4:50e)
                                                     4
                             The matrix elements hn9jx jni are as follows
                                                                  2
                                                             "     p 
                                     4         4
                             hn ‡ 4jx jniˆhnjx jn ‡ 4iˆ              (n ‡ 1)(n ‡ 2)(n ‡ 3)(n ‡ 4)
                                                           2mù
                                                                                              (4:51a)
                                                                  2
                                                          1   "           p  
                                     4         4
                             hn ‡ 2jx jniˆhnjx jn ‡ 2iˆ            (2n ‡ 3)  (n ‡ 1)(n ‡ 2)   (4:51b)
                                                          2 mù
                                                    2
                                           3    "
                                     4                 2       1
                                 hnjx jniˆ            n ‡ n ‡                                 (4:51c)
                                           2 mù                2
                                                                  2
                                                          1   "           p  
                                     4         4
                             hn ÿ 2jx jniˆhnjx jn ÿ 2iˆ            (2n ÿ 1)  n(n ÿ 1)         (4:51d)
                                                          2 mù
                                                                  2
                                                             "     p 
                                     4         4
                             hn ÿ 4jx jniˆhnjx jn ÿ 4iˆ              n(n ÿ 1)(n ÿ 2)(n ÿ 3)   (4:51e)
                                                           2mù
                                     4
                                hn9jx jniˆ 0,     n9 6ˆ n, n   2, n   4                       (4:51f)
   128   129   130   131   132   133   134   135   136   137   138