Page 351 - PRINCIPLES OF QUANTUM MECHANICS as Applied to Chemistry and Chemical Physics
P. 351

342                              Appendix J
                                                        z


                                                                              2
                                                                    r
                                                                     12
                                                               1
                                                           r
                                                            1       r
                                                                     2
                                                             γ

                                                                                   y





                                                 x

                             Figure J.1 Distance between two particles 1 and 2 and their respective distances from
                             the origin.

                                                         z




                                                                r        2
                                                                 12
                                                        1
                                                                    r
                                                                     2
                                                       r 1 θ 2


                                                                               y

                                                             j 2



                                                   x

                             Figure J.2 Rotation of the coordinate axes in Figure J.1 so that the z-axis lies along r 1 .


                                    ……                     … ð                … ð       … 2ð  … 2ð
                                  1     ÿ(r 1 ‡r 2 )
                                 X     e        l 2 2
                              I ˆ              s r r dr 1 dr 2  P l (cos è 2 ) sin è 2 dè 2  sin è 1 dè 1  dj 1  dj 2
                                                 1 2
                                          r .
                                  lˆ0                       0                  0         0     0
                             The integrals over è 1 , j 1 , and j 2 are readily evaluated. Since P 0 (ì) ˆ 1, we may write
                             the integral over è 2 as
   346   347   348   349   350   351   352   353   354   355   356